

by Michael Rosenblum and Dr. Paul Dorsey

Oracle®

PL/SQL
FOR

DUMmIES
‰

01_599577 ffirs.qxp 5/1/06 12:08 PM Page i

oracle
pLsQL

i

File Attachment
C1.jpg

01_599577 ffirs.qxp 5/1/06 12:08 PM Page iv

by Michael Rosenblum and Dr. Paul Dorsey

Oracle®

PL/SQL
FOR

DUMmIES
‰

01_599577 ffirs.qxp 5/1/06 12:08 PM Page i

Oracle® PL/SQL For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Oracle is a registered trade-
mark of Oracle Corporation. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2006922426

ISBN-13: 978-0-7645-9957-6

ISBN-10: 0-7645-9957-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/RX/QV/QW/IN

01_599577 ffirs.qxp 5/1/06 12:08 PM Page ii

www.wiley.com

About the Authors
Michael Rosenblum is originally from Kremenchuk, Ukraine. In 2000, he moved
to the United States, where he lives with his family in Edison, New Jersey. He
works as a Development DBA at Dulcian, Inc. Michael is responsible for system
tuning and application architecture. He also supports Dulcian developers
by writing complex PL/SQL routines and researching new features. He is a
frequent presenter at various regional and national Oracle user group confer-
ences. In his native Ukraine, he received the scholarship of the President of
Ukraine, a Masters Degree in Information Systems, and a Diploma with Honors
from the Kiev National University of Economics, Ukraine.

Dr. Paul Dorsey is the founder and President of Dulcian, Inc. (www.dulcian.
com), an Oracle consulting firm that specializes in business rules-based
Oracle Client-Server and Web custom application development. He is the
chief architect of Dulcian’s Business Rules Information Manager (BRIM®) tool.
Paul is the co-author of seven Oracle Press books that have been translated
into nine languages: Oracle JDeveloper 10g Handbook, Oracle9i JDeveloper
Handbook, Oracle JDeveloper 3 Handbook, Oracle Designer Handbook (2
editions), Oracle Developer Forms and Reports: Advanced Techniques and
Development Standards, Oracle8 Design Using UML Object Modeling. In 2003,
he was honored by ODTUG as volunteer of the year, in 2001 by IOUG as vol-
unteer of the year and by Oracle as one of the six initial honorary Oracle 9i
Certified Masters. Paul is an Oracle Fusion Middleware Regional Director. He
is the President of the New York Oracle Users’ Group and a Contributing
Editor of the International Oracle User Group’s SELECT Journal. He is also
the founder and chairperson of the ODTUG Business Rules Symposium
(now called Best Practices Symposium), currently in its sixth year, and
the J2EE SIG.

Dedications
Dedicated to the memory of my grandfather, Vladimir Zaguskin, who was
always able to give me a simple explanation of not-so-simple things.

— Michael Rosenblum, Edison, NJ, 2006

Dedicated to Dr. Robert Stafford Sterling (my mentor in graduate school and
no dummy) and to his namesake Robert Stefan Dorsey (born December 2005,
who I hope will also not be a dummy).

— Dr. Paul Dorsey, Colonia, NJ, 2006

01_599577 ffirs.qxp 5/1/06 12:08 PM Page iii

01_599577 ffirs.qxp 5/1/06 12:08 PM Page iv

Authors’ Acknowledgments
Michael Rosenblum: I would like to thank my co-author, Dr. Paul Dorsey (a
well-known guru in the Oracle world), for inviting me to take part in writing
this book and for all his patience working with me for the last five years. Also,
I would like to acknowledge the efforts of our project manager, Caryl Lee
Fisher. She not only kept the lazy authors on track, but even managed to
convert my not-exactly-native English into something people could read. Of
course, the book in the form you are reading it would not have been possible
without our wonderful technical editor Leslie Tierstein (you can’t imagine the
number of small “bugs” she discovered in the original drafts). And, last but
not least, love and special thanks to my wife Dora for withstanding the added
pressure on her while I was writing this book.

Dr. Paul Dorsey: I would first like to acknowledge my co-author Michael
(“Misha”) Rosenblum. It is a joy to work with someone possessing such drive
and intellect. His unwillingness to be sloppy in his code and thinking have
given not only this book, but all his work, an aspect of excellence all too
unusual in this industry. I would also like to thank Caryl Lee Fisher (our unac-
knowledged “co-author”). Caryl Lee kept Misha and me on track and helped
wordsmith the entire manuscript. This is my eighth such collaboration
involving Caryl Lee, and I can safely say that I am not sure whether I ever
would have published even my first book without her assistance. She acted
as the intermediary between the excellent editors at Wiley and the authors,
thereby averting virtually certain bloodshed. She helped to foster the illusion
that we are very easy authors to work with. Leslie Tierstein provided her
always impeccable technical edits. I have worked with her on a number of
projects, and she provides many valuable contributions to the finished prod-
uct. A special thank you goes to my lovely wife Ileana. She not only endured
all my time away from home (for the 3 months preceding and following my
son’s birth) working on this book, but she also provided serious technical
assistance, since she is a first-rate developer in her own right.

Both authors would like to thank their colleagues Mark Hernandez, Marc
Bacchus, John Rydzy, and Stephen Germany for their help in reviewing the
code samples and text for accuracy.

The authors would also like to thank the Wiley team of Rebecca Huehls,
Virginia Sanders, Tiffany Ma, and Terri Varveris for their help with this project.

01_599577 ffirs.qxp 5/1/06 12:08 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Rebecca Huehls

Acquisitions Editors: Tiffany Ma, Terri Varveris

Copy Editor: Virginia Sanders

Technical Editor: Leslie Tierstein

Editorial Manager: Leah P. Cameron

Media Development Manager: Laura VanWinkle

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinator: Patrick Redmond

Layout and Graphics: Claudia Bell, Carl Byers,
Denny Hager, Alicia B. South

Proofreaders: Dwight Ramsey, Techbooks

Indexer: Techbooks

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_599577 ffirs.qxp 5/1/06 12:08 PM Page vi

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: Basic PL/SQL Concepts7
Chapter 1: PL/SQL and Your Database ..9
Chapter 2: The PL/SQL Environment...23

Part II: Getting Started with PL/SQL39
Chapter 3: Laying the Groundwork: PL/SQL Fundamentals41
Chapter 4: Controlling Program Flow ..85
Chapter 5: Handling Exceptions ...105
Chapter 6: PL/SQL and SQL Working Together...127

Part III: Standards and Structures163
Chapter 7: Putting Your Code in the Right Place..165
Chapter 8: Creating Naming Standards ...187
Chapter 9: Creating Coding Standards ..201

Part IV: PL/SQL Data Manipulations219
Chapter 10: Basic Datatypes ...221
Chapter 11: Advanced Datatypes ...253

Part V: Taking PL/SQL to the Next Level.....................289
Chapter 12: Transaction Control ..291
Chapter 13: Dynamic SQL and PL/SQL ..313
Chapter 14: PL/SQL Best Practices ...335

Part VI: The Part of Tens ...355
Chapter 15: Ten PL/SQL Tips ..357
Chapter 16: Ten Common Mistakes to Avoid in PL/SQL..377

Index ...397

02_599577 ftoc.qxp 5/1/06 12:09 PM Page vii

02_599577 ftoc.qxp 5/1/06 12:09 PM Page viii

Table of Contents
Introduction..1

About This Book...1
Foolish Assumptions ...2
How This Book Is Organized...2

Part I: Basic PL/SQL Concepts ..2
Part II: Getting Started with PL/SQL...3
Part III: Standards and Structures ..3
Part IV: PL/SQL Data Manipulations ..3
Part V: Taking PL/SQL to the Next Level ...3
Part VI: The Part of Tens ...4

Icons Used in This Book..4
Where to Go from Here..4

Part I: Basic PL/SQL Concepts..7

Chapter 1: PL/SQL and Your Database .9
Knowing Just Enough about Relational Databases......................................9

What makes a database “relational”? ..10
Understanding basic database terminology12
Introducing database normalization..13
What is a DBMS?...16

The Scoop on SQL and PL/SQL...16
The purpose of SQL and PL/SQL ..17
The difference between SQL and PL/SQL..18
What’s new in Oracle SQL and PL/SQL? ..18

What Is PL/SQL Good For? ..19
Using database triggers ...19
Scripting with speed ..20
Keeping code server-side..20
Programming for Oracle Developer ...21

Chapter 2: The PL/SQL Environment .23
Setting Up an Oracle Environment...23
Hardware and Software Requirements..25
Accessing the Oracle Technology Network..26
Installing the Database ..27
Working with Code...28

SQL*Plus..28
Oracle SQL Developer..30
Third-party tools ..30

02_599577 ftoc.qxp 5/1/06 12:09 PM Page ix

Establishing a Database Connection ...31
Checking the operating services ..32
Connecting with your username ..32
Unlocking (or locking) accounts ..33
Resetting passwords ..33
Setting up the server to communicate ..34

The Basics of PL/SQL Programs...34
Writing a simple program..34
Creating stored procedures ..36
Passing parameters to procedures ..36

Examining the Sample Data ..37
The Scott/Tiger schema ..37
The Human Resources (HR) and Order Entry (OE) schemas.........38

Part II: Getting Started with PL/SQL.............................39

Chapter 3: Laying the Groundwork: PL/SQL Fundamentals 41
PL/SQL As a Programming Language ..41
Anonymous PL/SQL Blocks...42
Introducing the Lexical Set of Elements..43

Identifiers ..44
Delimiters ..44
Literals ...45
Comments ...45

Working with Constants and Variables..46
Declaring variables...46
Assigning values to variables ...48
Literals as variable values...49
Understanding the scope of variables...51

Building Expressions with Operators..53
Running Anonymous Blocks of Code...56

Identifying common mistakes...56
Spotting compilation errors..57
Recognizing semicolon-related errors...57

Creating Reusable PL/SQL Code ..59
Wrapping a task into a procedure ..59
Returning values with functions...61
Parameters of subprograms ...63

Storing PL/SQL in the Database ...67
Database procedures and functions ..68
Packages ..69
Triggers..71
Interpreting and fixing compilation errors..73

Oracle PL/SQL For Dummies x

02_599577 ftoc.qxp 5/1/06 12:09 PM Page x

Checking Out PL/SQL Extras ..76
Overloading calls..76
Resolving calls to subprograms ...78
Recursion ..80
Compiler hints and directives ..82
Built-in packages ..83

Chapter 4: Controlling Program Flow .85
Creating Condition Statements ..85

IF...THEN statements ..86
IF...ELSE statements ...87
CASE statements...89
Comparing with NULL..91
Handling conditions ...95

Looping the Loop ...97
Simple loops..97
Nested loops ...99
WHILE loop..100
FOR loop ..102

Chapter 5: Handling Exceptions .105
Understanding Exception Basics ...106
Adding Exception Handlers to Your Code ..107
Understanding Different Exception Types..110
Predefined Exceptions in PL/SQL Code...111
Adding User-Defined Exceptions..114

Assigning a code to a user-defined exception115
Including error messages in user-defined exceptions...................116

Propagation of Exceptions..118
Seeing propagation of exceptions in action....................................118
Handling exceptions without halting the program122
Avoiding exceptions raised in declaration part

and exception handler ...124
Writing Exceptional Exceptions ...126

Chapter 6: PL/SQL and SQL Working Together127
Cursors: What They Are and How to Use Them128

Returning more than one piece of information129
Looping through multiple records ...132
Placing cursors in nested loops ...133
Passing parameters to cursors...134

Knowing Where to Declare Cursors...137
Defining cursors in the header of the program unit138
Defining cursors in the local PL/SQL block.....................................138
Defining cursors in the package body ...139
Defining cursors in the package spec..140

xiTable of Contents

02_599577 ftoc.qxp 5/1/06 12:09 PM Page xi

Being Explicitly Smart with Implicit Cursors..142
Retrieving a single row: The basic syntax.......................................142
Handling exceptions in implicit cursors ...143
Returning an implicit cursor into a record143

Accessing Status Info by Using Cursor Variables.....................................144
Checking the status of explicit cursors ...145
Checking the status of implicit cursors...146

Updating Records Fetched from Cursors..148
Using a simple UPDATE statement...148
Updating with logical operators...148

Taking a Shortcut with CURSOR FOR Loops...150
Comparing CURSOR FOR loops to cursors

with the LOOP command...150
When do CURSOR FOR loops simplify exception handling?.........152
When CURSOR FOR loops make your life harder...........................153
Knowing what record is processing...155

Referencing Functions in SQL...155
Important facts to remember..157
Getting good performance with functions160

Part III: Standards and Structures163

Chapter 7: Putting Your Code in the Right Place 165
Putting Code in the Database ...165

Managing code..166
Packaging code in the database ...166
Placing triggers on tables..174
Building INSTEAD OF trigger views..177
Advantages of putting code in the database182
Disadvantages of putting code in the database182

Putting Code in the Application Server (Middle-Tier Approach)183
Advantages of the middle-tier approach...184
Disadvantages of the middle-tier approach....................................184
Placing code in the view layer ..185

Where Should You Place the Business Logic? ..185

Chapter 8: Creating Naming Standards .187
What’s in a Naming Standard?..187

Oracle database influences ...188
Java influences..188
Modern application development tools

and their influences..189
Setting Naming Standards for Common Code Elements189

Basic objects ...190
Variables ..191

Oracle PL/SQL For Dummies xii

02_599577 ftoc.qxp 5/1/06 12:09 PM Page xii

Program units: Procedures, packages, functions, triggers193
Parameters in code objects ..194
Exceptions...196
User-defined datatypes..196
Collections...197
Filenames...198

Making Sure Your Organization Follows Standards.................................199

Chapter 9: Creating Coding Standards .201
Why Standards Are Important..201
Universal Truths...202

Don’t hard-code any constant value ..202
Don’t make your program units too big or too small205
Put each data element on its own line...206
Too many comments are much better than

too few comments ..207
Avoid global variables ...210
Indent carefully...210
Be careful with capitalization ...211
Use generic variable datatype declarations211
Limit line length..213
Use explicit data conversion for dates ..213
Use synonyms...213

Developing SQL Code Consistently ...214
Using a new line..214
Using explicit column lists ..214
Prefixing (and suffixing) column names

from multiple tables ..215
Giving columns aliases ..216
Using parentheses in complex mathematical

and logical expressions ...216
Using white space intelligently...217
Writing save exception handlers..217
Packaging stored program units...217

Part IV: PL/SQL Data Manipulations...........................219

Chapter 10: Basic Datatypes .221
Introducing the Main Datatype Groups...221
Working with Numeric Datatypes ..222

Using the NUMBER datatype ..222
Boosting performance with BINARY_INTEGER225
Using BINARY_FLOAT and BINARY_DOUBLE

for complex calculations ...226

xiiiTable of Contents

02_599577 ftoc.qxp 5/1/06 12:09 PM Page xiii

Handling numeric datatypes in built-in functions..........................228
Keeping Track of Date and Time ..229

Selecting the info you want from DATE ...229
Using TIMESTAMP ..234
Using TIMESTAMP WITH TIME ZONE ..235
Storing elapsed time with INTERVAL ...236
Working with dates and built-in functions237

Storing Logical Values with BOOLEAN ..241
Processing Characters and Strings..242

Limiting variable length with CHAR versus VARCHAR2242
Useful character built-in functions...244
Extending your options with regular expressions250

Chapter 11: Advanced Datatypes .253
Handling Large Objects in the Database ...253

Using internal large objects (CLOB, BLOB)254
Creating pointers with external large objects254

Working with Large Objects..255
Populating BFILE ..255
Loading data to the CLOB by using BFILE.......................................256
Loading a page to a BLOB ...257
Performing basic string operations on CLOBs258

Keeping Code Consistent with User-Defined Subtypes...........................259
Defining Your Own Datatypes...260

Records..261
Object types ..267

Grouping Sets of Data into Collections..271
Using VARRAYs ...272
Nesting variable data sets in tables ...275
Associative arrays (index-by tables) ...280

Speeding Up Data Collection with Bulk Operations283
Using the BULK COLLECT command...284
Adding a limit to BULK COLLECT...286

Part V: Taking PL/SQL to the Next Level289

Chapter 12: Transaction Control .291
Using Transactions to Maintain Data Consistency292
Committing or Rolling Back Changes to the Database............................293

Firing explicit and implicit commits ..294
Rolling back changes ...294
Knowing when to use implicit rollbacks ...297
Resolving deadlocks ..298

Oracle PL/SQL For Dummies xiv

02_599577 ftoc.qxp 5/1/06 12:09 PM Page xiv

Autonomous Transactions..298
Setting up the syntax for an autonomous transaction299
Handling auditing and security with autonomous

transactions...300
Autonomous transaction features..302
Applying autonomous transactions to other real-world

situations ...308

Chapter 13: Dynamic SQL and PL/SQL .313
Taking Advantage of Dynamic SQL ..313
A Simple EXECUTE IMMEDIATE ...314
Building SQL on the Fly ...316

Improve performance with bind variables......................................317
Return information using cursor variables.....................................324

Building DDL on the Fly...325
Using Quoted Strings with Dynamic SQL..327
Working with Advanced Datatypes..328

Using BULK COLLECT with dynamic SQL329
Dynamic OPEN...FOR ...330

Chapter 14: PL/SQL Best Practices .335
Why Are Best Practices Important?...335
Laying the Groundwork for Good Coding ...336

Understanding the big picture..336
Communicating effectively..337
Creating a code specification..337

Writing Code with Best Practices in Mind ..338
Stub out your code...338
Check the architecture as you go...339
Prove code works with test cases..340
Use code libraries...340
Keep the code maintainable ...341
Don’t forget about performance...341
Compile as you go ..341
Debug the timesaving way ..342

Testing Your Code ..343
What are you testing? ..345
Creating a testing architecture ...345
Performance and load testing...345
Tuning performance ..346
“Good enough is best” ...348

Coding the Agile Way...349
Working together in Agile teams ..349
Programming in pairs ..350
Delivering code quickly ...350
Test first...351

xvTable of Contents

02_599577 ftoc.qxp 5/1/06 12:09 PM Page xv

Keeping Up-to-Date with Oracle ...352
Conventional wisdom isn’t always right ...352
Buy books..353
Go to conferences...353
Join your local Oracle user group..354
Use online resources..354

Part VI: The Part of Tens..355

Chapter 15: Ten PL/SQL Tips .357
Use SELECT INTO Correctly ...357
Don’t Assume Column Order in DML Statements....................................360
Use the NOCOPY Command ...362
Be Careful of Function Calls That Impact Performance364
Beware of Implicit Commits..366
Use Only One RETURN Statement per Function369
Save Debugging Time with WHEN OTHERS ..370
Know When to Pass Parameters or Use Global Variables.......................372
Use Implicit Cursors When Appropriate...373
Remember That Dates Are Numbers...375

Chapter 16: Ten Common Mistakes to Avoid in PL/SQL 377
Catching an Exception with WHEN OTHERS THEN NULL377
Forgetting to Handle NULL Values ...379
Creating Unintended Boolean Expressions ..380
Forgetting to Close an Explicit Cursor ..382
Starting Endless Loops..384
Reinventing the Wheel...386
Converting Datatypes Implicitly ..388
Cutting and Pasting Code..391
Ignoring Code Readability...393
Assuming Code Doesn’t Need Comments...395

Index..397

Oracle PL/SQL For Dummies xvi

02_599577 ftoc.qxp 5/1/06 12:09 PM Page xvi

Introduction

PL/SQL (pronounced P-L-S-Q-L or P-L-see-quel) is a programming language
that was created by Oracle as a procedural language fully integrated

with SQL, to be used in working with Oracle databases. Anyone contemplat-
ing working in the Oracle environment needs to know PL/SQL.

In many ways, PL/SQL is a standard procedural programming language. It has
functions, procedures, variable declarations, loops, recursion, and so on. If
you’re familiar with the programming language Ada, you’ll find it’s similar to
PL/SQL. If you’ve used any standard programming language, such as C or
Pascal, you’ll find yourself quite at home with PL/SQL. If you’re an object-
oriented (OO) programmer who is used to languages like C++ or Java, you
can’t use your OO techniques as easily in PL/SQL, but all your procedural
experience will transfer quite easily.

What makes PL/SQL special is that it is fully integrated with SQL. This makes
it a wonderful language to use when programming applications that need to
interact with an Oracle database.

About This Book
This book doesn’t include everything you need to know about PL/SQL.
However, it does provide many examples of good coding practice, and it
warns you about what to avoid when writing code. We are experienced
Oracle professionals who have designed and built many working systems and
have written many thousands of lines of PL/SQL code. The information we
provide in this book should whet your appetite for discovering many of the
ways in which you can use PL/SQL to communicate with a relational data-
base. We also point you to numerous other handy resources that can help
you consolidate and expand your knowledge of this programming language.

This book gives you the core information that every PL/SQL developer
should know. When we started writing this book, we asked many of our
friends and colleagues in the industry what they thought PL/SQL developers
should know. If you practice everything we show you in this book, you’ll be
on your way to becoming an excellent developer.

To help you practice, we’ve posted the code examples that appear in this
book on our Web site, www.dulcian.com (click the publications link),
or at www.dummies.com/go/oracle_pl_sql.

03_599577 intro.qxp 5/1/06 12:09 PM Page 1

Foolish Assumptions
This book is written for people just getting started with the PL/SQL language
but does assume that you have some programming language experience. You
should understand the basics of computer programming and be familiar with
SQL in order to benefit from the information contained in this book.

If you have some basic computer programming experience and are planning
to work in the Oracle environment as an application developer, this book is
for you. If your goal is to become a database administrator (DBA), it might be
a good additional reference, but you should see Oracle 9i For Dummies (latest
version as of this writing), by Carol McCullough-Dieter, published by Wiley, or
other books about Oracle 10g for information relevant for DBAs.

When an author writes a book, he or she must try to imagine who the readers
might be. For this book, we imagine that you might be an individual who
recently graduated from college and who is working at a job where you’ll be
creating programs in an Oracle environment. This book will also be useful as
part of a database course if you are still in college. You might be an experi-
enced Java developer who wants an easy way to get to know some of the
basics of PL/SQL. This book includes the information that we would want to
tell any new colleagues who came to work with us.

How This Book Is Organized
You might not need to read the chapters of this book in sequence. However,
Parts I and II present the basic concepts you’ll need to understand later parts.
If you’re already an experienced programmer, the basic concepts might be
familiar, but you’ll need to see how to specifically apply them in PL/SQL.

Part I: Basic PL/SQL Concepts
This part provides an introduction to the Oracle environment as a whole and
explains how PL/SQL fits into it. It includes an overview of how relational
databases work as well as a review of some basic database concepts and ter-
minology that you need to understand for later chapters. We tell you about
the hardware and software needed to set up a simple Oracle database and
some useful Integrated Development Environments (IDEs) available to help
you practice using PL/SQL.

2 Oracle PL/SQL For Dummies

03_599577 intro.qxp 5/1/06 12:09 PM Page 2

Part II: Getting Started with PL/SQL
In this part, you discover the different structures and ways to create code
to accomplish common programming tasks. Chapter 3 includes descriptions
of the datatypes and variables that you’ll need to work with, and extras to
enhance your coding expertise. Chapter 4 delves into control structures and
provides examples of how to use conditions and loops correctly. In Chapter 5,
you find out how to structure code and handle errors and exceptions. And
you can’t be a good PL/SQL programmer without understanding a bit about
SQL, so Chapter 6 discusses how SQL and PL/SQL can work together and
introduces cursors. (If you don’t know any SQL, this isn’t the book for you
quite yet. First read SQL For Dummies, 5th Edition, by Allan G. Taylor.)

Part III: Standards and Structures
In this part, we discuss standards and guidelines for writing good code — some
of the most important material in the book. Chapter 7 presents the various
options for where to place PL/SQL code in a system project. In Chapters 8 and
9, you find out about the importance of creating and enforcing both naming
and coding standards. The sample standards shown are based on our experi-
ences in building large production systems.

Part IV: PL/SQL Data Manipulations
This part goes into more detail about different datatypes and how to use them.
We cover basic datatypes in Chapter 10 and discuss more advanced constructs
(using large objects, collections, and bulk operations) in Chapter 11.

Part V: Taking PL/SQL to the Next Level
For those who have some basic experience with PL/SQL, Part V discusses
more complex concepts, including database interaction and transaction
control in Chapter 12 and using dynamic SQL and PL/SQL in Chapter 13.
Chapter 14 lists some PL/SQL coding best practices to follow based on
our wide experiences in building working systems.

3Introduction

03_599577 intro.qxp 5/1/06 12:09 PM Page 3

Part VI: The Part of Tens
This part summarizes some critical do’s and don’ts to keep in mind as you
create PL/SQL programs. Our advice provides useful tips to assist your first
programming attempts as well as describes pitfalls to avoid.

Icons Used in This Book
These tips provide shortcuts or easier and better ways of doing things.

This icon notes information that’s important to keep in mind when writing
code, or that we’ve found very useful in our work building real systems.

This icon appears when we discuss advanced concepts or additional informa-
tion that isn’t essential to your understanding of PL/SQL but might be useful
for doing additional reading or investigation.

This icon warns you about things in your code that can cause problems or
even stop a system from working properly.

Where to Go from Here
There are many sources of information about computer programming and
PL/SQL. This is merely a starting point for you to use as a list of additional
helpful information about PL/SQL to expand your knowledge. You can’t pro-
gram successfully in isolation. It is very important to be plugged into the
broader Oracle community through local user groups, conferences, the
Internet, and other PL/SQL programmers.

Many useful sources of information about PL/SQL and the Oracle Environ-
ment are on the Internet. Keep in mind that not all information and code sam-
ples on the Internet are accurate and bug free. Always be aware of the source
of the information and test any code carefully before deploying it. The follow-
ing are two particularly useful Web sites for obtaining the latest information
about PL/SQL:

4 Oracle PL/SQL For Dummies

03_599577 intro.qxp 5/1/06 12:09 PM Page 4

� Oracle Technology Network (OTN) (www.otn.oracle.com) is Oracle’s
online resource for all its database and application products. See espe-
cially the special technology section devoted to PL/SQL (www.oracle.
com/technology/tech/pl_sql/index.html). Chapter 2 has more
details.

� Steven Feuerstein writes often about PL/SQL. His Web site (www.
stevenfeuerstein.com) is a great resource.

The many Oracle User Groups can provide lots of helpful information and
events for Oracle professionals. By attending a user group conference, you
can discover more about the Oracle environment.

� Oracle Development Tools User Group (ODTUG) (www.odtug.com) is
the leading Oracle user group for developers. It focuses on the tools that
developers use to build Oracle systems (not just tools sold by Oracle).

� Independent Oracle Users Group (IOUG) (www.ioug.org) is a world-
wide organization that encompasses many regional user groups in the
United States and abroad. To find a regional group in your area, do an
online search for “Oracle User Groups”.

Be sure to join the user group nearest you and go to meetings, talk to other
PL/SQL developers, and connect with other Oracle professionals. That is the
best way to keep up with the rapidly changing Oracle environment.

5Introduction

03_599577 intro.qxp 5/1/06 12:09 PM Page 5

6 Oracle PL/SQL For Dummies

03_599577 intro.qxp 5/1/06 12:09 PM Page 6

Part I
Basic PL/SQL

Concepts

04_599577 pt01.qxp 5/1/06 12:09 PM Page 7

In this part . . .

Part I includes two chapters to get you started with
PL/SQL. Because you need to understand something

about relational databases to be a good PL/SQL program-
mer, Chapter 1 provides a quick overview of the most
important concepts. It also reviews some database termi-
nology and explains some of the differences between SQL
and PL/SQL. For those with very little programming expe-
rience, Chapter 1 includes a very brief explanation of the
basic structure and syntax of PL/SQL and explains where
it is most useful.

Chapter 2 describes the total PL/SQL environment and
explains how to set up this environment so you can begin
writing code. You discover how to set up a database, con-
nect to it, and access the Oracle sample schemas that you
can use to practice.

04_599577 pt01.qxp 5/1/06 12:09 PM Page 8

Chapter 1

PL/SQL and Your Database
In This Chapter
� Getting to know relational databases

� Understanding database terminology

� Finding out about Oracle

� Using SQL and PL/SQL

� Discovering what PL/SQL is good for

PL/SQL is an extension to the industry-standard SQL language. Oracle
Corporation developed PL/SQL and released the first version in 1991.

PL/SQL is an easy-to-use procedural language that interacts seamlessly with
the Oracle database. Server-side PL/SQL is part of the Oracle database and
needs no explicit installation or licensing.

This chapter introduces you to PL/SQL and provides some basics about rela-
tional databases.

Knowing Just Enough about
Relational Databases

Building a system in Oracle or some other relational database product does
not automatically make it a relational database. Similarly, you can design a
perfectly good relational database and implement it in something other than
a relational database product. We discuss two important areas:

� What do people mean by relational database?

� What is the Oracle relational database product?

05_599577 ch01.qxp 5/1/06 12:10 PM Page 9

What makes a database “relational”?
When a database is described as relational, it has been designed to conform
(at least mostly) to a set of practices called the rules of normalization. A nor-
malized database is one that follows the rules of normalization.

For example, in an organization, you have employees who work in specific
departments. Each employee and department has a number and a name. You
could organize this information as shown in Table 1-1.

Table 1-1 Sample Employee Information
EmpNo Ename DeptNo DeptName

101 Abigail 10 Marketing

102 Bob 20 Purchasing

103 Carolyn 10 Marketing

104 Doug 20 Purchasing

105 Evelyn 10 Marketing

If you structure your data this way and make certain changes to it, you’ll
have problems. For example, deleting all the employees in the Purchasing
department will eliminate the department itself. If you change the name of
the Marketing department to “Advertising,” you would need to change the
record of each employee in that department.

Using the principles of relational databases, the Employee and Department
data can be restructured into two separate tables (DEPT and EMP), as shown
in Tables 1-2 and 1-3.

Table 1-2 A Sample Relational DEPT Table
DeptNo DeptName

10 Marketing

20 Purchasing

10 Part I: Basic PL/SQL Concepts

05_599577 ch01.qxp 5/1/06 12:10 PM Page 10

Table 1-3 A Sample Relational EMP Table
EmpNo EName DeptNo

101 Abigail 10

102 Bob 20

103 Carolyn 10

104 Doug 20

105 Evelyn 10

By using this structure, you can examine the EMP table to find out that Doug
works in department 20. Then you can check the DEPT table to find out that
department 20 is Purchasing. You might think that Table 1-1 looks more effi-
cient. However, retrieving the information you need in a number of different
ways is much easier with the two-table structure. Joining the information in
the two tables for more efficient retrieval is exactly the problem that rela-
tional databases were designed to solve.

When the tables are implemented in the database, the information in the two
tables is linked by using special columns called foreign keys. In the example,
the DeptNo column is the foreign key linking the Department and Employee
tables.

Tables 1-4 and 1-5 show another common database structure, namely a pur-
chase order (PURCH_ORDER table) for an item and the information details
associated with the purchase order (PURCH_ORDER_DTL table).

Table 1-4 A Sample Relational PURCH_ORDER Table
PO_Nbr Date

450 12/10/2006

451 2/26/2006

452 3/17/2006

453 6/5/2006

11Chapter 1: PL/SQL and Your Database

05_599577 ch01.qxp 5/1/06 12:10 PM Page 11

Table 1-5 A Sample Relational PURCH_ORDER_DTL Table
PO_Nbr Line_Nbr Item Qty Price

450 1 Hammer 1 $10.00

451 1 Screwdriver 1 $8.00

451 2 Pliers 2 $6.50

451 3 Wrench 1 $7.00

452 1 Wrench 3 $7.00

452 2 Hammer 1 $10.00

453 1 Pliers 1 $6.50

A purchase order can include many items. Table 1-5 shows that Purchase
Order 451 includes three separate items. The link (foreign key) between the
tables is the Purchase Order Number.

Understanding basic database terminology
A database consists of tables and columns, as we describe in the preceding
section. There are some other terms you need to know in order to under-
stand how databases work. A database is built in two stages. First you create
a logical data model to lay out the design of the database and how the data
will be organized. Then you implement the database according to the physical
data model, which sets up the actual tables and columns. Different terminol-
ogy applies to the elements of the logical and physical designs. In addition,
relational database designers use different words from object-oriented (OO)
database designers to describe the database elements. Table 1-6 shows the
words used in each of these cases.

Table 1-6 Database Design Terminology
Logical/Relational Logical/Object-Oriented Physical Implementation

Entity Class Table

Attribute Attribute Column

Instance Object Row

12 Part I: Basic PL/SQL Concepts

05_599577 ch01.qxp 5/1/06 12:10 PM Page 12

The definitions of the words in Table 1-6 are as follows:

� Entity: An entity corresponds to something in the real world that is of
interest and that you want to store information about. Examples of enti-
ties include things such as departments within an organization, employ-
ees, or sales. Each specific department or employee is considered an
instance of that entity. For example, in Table 1-3, Doug is an instance of
the entity Employee. (In the OO world, Doug would be an object in the
Employee class.)

� Attribute: This word is used in both relational and OO databases to rep-
resent information about an entity instance or an object that will be
tracked. An example of an attribute might be the birth date or Social
Security number of an employee.

� Entities (classes), their attributes, and instances (objects): These are
implemented in the database as tables, columns, and rows respectively.

One additional important concept to understand when dealing with relational
databases is the primary key. A primary key uniquely identifies a specific
instance of an entity. No two instances of an entity can have the same pri-
mary key. The values of all parts of the primary key must never be null. The
most common types of primary keys in relational databases are ID numbers.
For example, in Table 1-3, the EmpID can be the primary key. Sometimes more
than one attribute (or sets of attributes) can be used as a primary key. These
attributes are called candidate keys, one set of which must be designated as
the primary key.

Introducing database normalization
A database is considered normalized when it follows the rules of normaliza-
tion. Database normalization is useful for several reasons:

� It helps to build a structure that is logical and easy to maintain.

� Normalized databases are the industry standard. Other database profes-
sionals will find it easier to work with your database if it is normalized.

� Retrieving data will be easier. This is actually the formal reason to nor-
malize. Graduate students in database theory courses often have to
prove a theorem that roughly states, “If your database is normalized,
you can be sure that any set of information you want to retrieve from
your database can be done by using SQL.”

You frequently need very complex procedural code to extract information
from a non-normalized database. The rules of normalization will help you to
design databases that are easy to build systems with.

13Chapter 1: PL/SQL and Your Database

05_599577 ch01.qxp 5/1/06 12:10 PM Page 13

Although a detailed discussion of normalization is beyond the scope of this
book, there are three basic rules of normalization that every database profes-
sional should have memorized. Not so coincidentally, we tell you about them
in the following three sections.

First Normal Form (1NF)
First Normal Form means that the database doesn’t contain any repeating
attributes. Using the Purchase Order example from Tables 1-4 and 1-5, the
same data could be structured as shown in Table 1-7.

Table 1-7 PURCH_ORDER Table (1NF Violation)
PO_NBR DATE ITEM 1 QTY1 PRICE1 ITEM2 QTY2 PRICE2

450 12-10-06 Hammer 1 $10.00

451 02-26-06 Screwdriver 1 $8.00 Pliers 2 $6.50

452 03-17-06 Wrench 3 $7.00 Hammer 2 $10.00

453 06-05-06 Pliers 1 $6.50

Although this table looks okay, what if a third item were associated with PO
451? Using the structure shown in Table 1-7, you can order only two items.
The only way to order more than two items is to add additional columns, but
then to find out how many times an item was ordered, you’d need to look in
all the item columns. Table 1-7 violates First Normal Form.

You can build a good database that doesn’t adhere to First Normal Form by
using more complex collections such as VARRAYs and nested tables (which
we discuss in Chapter 11).

Second Normal Form (2NF)
Violations of Second Normal Form occur when the table contains attributes
that depend on a portion of the primary key.

To talk about Second Normal Form, you should know what we mean by an
attribute being dependent on another attribute. Say attribute X is dependent
upon attribute Y. Then if you know the value of attribute X, you have enough
information to find the value of attribute Y. Logically, attribute Y can have
only one value. For example, from the information in Table 1-1, if you know
the Employee Number (EmpNo), you also know the employee’s name, which
department number he or she works in, and the number of that department.
In this case, the EmpNo is the primary key. However, knowing the department
number and department name doesn’t tell you a specific employee’s name or
number. You can’t use the department number/name combination as the pri-
mary key. You can’t even use the name (Ename) as the primary key because a
large organization might have more than one “John Smith” working there.

14 Part I: Basic PL/SQL Concepts

05_599577 ch01.qxp 5/1/06 12:10 PM Page 14

Second Normal Form violations can exist only when you have a multi-column
primary key, such as the purchase order and the purchase order detail struc-
ture, as shown in Tables 1-8 and 1-9.

Table 1-8 PURCH_ORDER Table
PO_NBR DATE Vendor

450 12-10-06 ABC Co.

451 02-26-06 XYZ Inc.

452 03-17-06 XYZ Inc.

453 06-05-06 ABC Co.

Table 1-9 PURCH_ORDER_DETAIL Table (2NF Violation)
PO_NBR LINE DATE ITEM QTY PRICE

450 1 12-10-06 Hammer 1 $10.00

451 1 02-26-06 Screwdriver 1 $8.00

451 2 02-26-06 Pliers 2 $6.50

452 1 03-17-06 Wrench 3 $7.00

452 2 03-17-06 Hammer 2 $10.00

453 1 06-05-06 Pliers 1 $6.50

In this structure, the PURCH_ORDER_DETAIL table uses both PO_NBR and
LINE for the primary key. But DATE is dependent only on the PO_NBR (when
you know the PO_NBR, you know the date that each item was ordered), so
that column violates Second Normal Form.

Third Normal Form (3NF)
Third Normal Form violations occur when a transitive dependency exists. This
means that an attribute ID is dependent on another attribute that isn’t part
of either a primary or candidate key. These are serious violations indicating
errors in the database design that must be detected and corrected. Table 1-1
shows an example of Third Normal Form violation in a badly designed data-
base. The DeptName column is dependent only on the DeptNo column (that
is, if you know the department number, you know the name of the depart-
ment). The EmpNo is the obvious primary key, so the existence of DeptName
column violates Third Normal Form.

15Chapter 1: PL/SQL and Your Database

05_599577 ch01.qxp 5/1/06 12:10 PM Page 15

All attributes in entities (columns in tables) must be dependent upon the pri-
mary key or one of the candidate keys and not on other attributes.

For more information about normalization, look at books about database
theory such as Beginning Database Design, by Gavin Powell (Wiley) and A
First Course in Database Systems, by Jeffrey D. Ullman and Jennifer Widom
(Prentice Hall), or numerous works by Chris J. Date.

What is a DBMS?
After you’ve designed a relational database, you need to implement it. The
easiest way to do this is by using a product that’s specifically designed for
this purpose. Products that perform these operations are called Relational
Database Management Systems (usually abbreviated to RDBMS or just DBMS).
They allow you to easily create relational databases by defining and creating
tables and then populating them with data. In addition, you could be provided
with a special tool to modify and manipulate the data and write reports and
applications to interact with the data.

DBMSs also handle all sorts of other important functions. They allow many
people to access the database at the same time without interfering with one
another or corrupting the data. They also make it easy to create backups in
case of problems such as a power failure or other disasters.

A number of positions in Information Technology involve interaction with a
DBMS:

� Database designer: This person analyzes the requirements for the system
and designs an appropriate database structure to house the data.

� Database administrator (DBA): This person installs the DBMS, monitors
it, and physically manages its operations.

� Database application developer: This person writes the code that
resides within the DBMS and directly interacts with the database.

� User interface (UI) application developer: This person writes the code for
the user interface, which enables users to communicate with the database.

Many other people, including project managers, software testers, and docu-
mentation specialists, also work with database systems. This book focuses
on the skills required to be a database application developer.

The Scoop on SQL and PL/SQL
As a database application developer, you interact with the Oracle DBMS
by using the programming languages Structured Query Language (SQL,

16 Part I: Basic PL/SQL Concepts

05_599577 ch01.qxp 5/1/06 12:10 PM Page 16

pronounced sequel) and Programming Language/Structured Query Language
(PL/SQL, pronounced either P-L-S-Q-L or P-L-sequel). In the following sections,
we introduce how SQL and PL/SQL work together and how they are different.
We also introduce what’s new in the current versions.

The purpose of SQL and PL/SQL
SQL is the industry standard language for manipulating DBMS objects. Using
SQL, you can create, modify, or delete database objects. This part of SQL is
called Data Definition Language (DDL). You can also use SQL to insert, update,
delete, or query data in these objects. This part of SQL is called Data
Manipulation Language (DML).

Oracle’s implementation of SQL isn’t exactly industry standard. Virtually
every DBMS (Oracle included) has invented items that are not part of the
standard specification. For example, Oracle includes sequences and support
for recursive queries that aren’t supported in other DBMS products.

17Chapter 1: PL/SQL and Your Database

Oracle is more than a database
The Oracle environment doesn’t consist solely
of the DBMS. The Oracle environment itself is
enormous and complex, and the large number
of products that Oracle sells is a reflection of
that. So how does the DBMS fit into the bigger
picture? Here’s a quick overview of the main
categories of Oracle products:

� Oracle DBMS: This database management
system runs on a variety of computers and
operating systems. As we write this book,
it’s often considered to be the largest,
fastest, most powerful, and fully featured
database product on the market. The Oracle
DBMS is the industry standard for big com-
panies that need to store and manipulate
large volumes of data. Oracle also provides
versions of the DBMS to support small and
medium-sized companies.

� Application development software: Oracle
has many application development products.

The current main product is JDeveloper, a
Java-based programming environment.

� Oracle Application Server (OAS): Web-
based applications typically run on a dedi-
cated computer. Oracle’s version of this is
called OAS.

� Oracle Applications: Oracle has created
or acquired a number of enterprise-wide
applications that work with the Oracle
DBMS and help Accounting, Manufactur-
ing, and Human Resources departments to
perform their day-to-day functions more
efficiently.

Oracle Corporation also includes consulting
(Oracle Consulting) and education (Oracle
University) divisions to round out its offering of
products and services.

05_599577 ch01.qxp 5/1/06 12:10 PM Page 17

Getting to know SQL in an Oracle environment allows you to work in almost
any DBMS environment, such as SQLServer or MySQL, but you’ll encounter
some differences in the DBMS environments. You should probably know SQL
before trying to use PL/SQL. This book assumes that you already know SQL. If
you haven’t mastered SQL, take a good long look at SQL For Dummies, 5th
Edition, by Allen G. Taylor (Wiley), before you dive into this book.

PL/SQL is unique to Oracle. It isn’t industry standard. No other product uses
it. Being able to use PL/SQL will help you work only within the Oracle data-
base environment, but if you’re familiar with any other programming lan-
guage, you’ll find that PL/SQL follows the same basic rules.

PL/SQL is similar to other non-object-oriented procedural programming lan-
guages, such as C or Pascal. Its intellectual roots go back to a programming
language called Ada.

What makes PL/SQL unique is its tight integration with SQL. It is easier and
more natural to embed SQL in PL/SQL than to do so in any other program-
ming language. This makes PL/SQL ideal for writing large, complex programs
that must interact with an Oracle database.

The difference between SQL and PL/SQL
SQL and PL/SQL are completely different languages. SQL is a limited language
that allows you to directly interact with the database. You can manipulate
objects (DDL) and data (DML) with SQL, but SQL doesn’t include all the things
that normal programming languages have, such as loops and IF...THEN
statements.

That is what PL/SQL is for. PL/SQL is a normal programming language that
includes all the features of most other programming languages. But it has one
thing that other programming languages don’t have, namely the easy ability
to integrate with SQL.

What’s new in Oracle SQL and PL/SQL?
Oracle SQL and PL/SQL are evolving languages that constitute the backbone
of applications written for the Oracle environment. Every version of the
Oracle database expands the features of these languages. The production
version of Oracle 10g Release 2 has recently been released. As with previous
versions, this release offers lots of new things, including the following:

� PL/SQL will probably run faster in the 10g version than it did in previous
versions. You don’t have to do anything extra to benefit from that
improvement. Oracle has made PL/SQL code run faster without requir-
ing any additional work on the part of the programmer.

18 Part I: Basic PL/SQL Concepts

05_599577 ch01.qxp 5/1/06 12:10 PM Page 18

� In SQL, many new commands allow you to retrieve information more
easily than before. Information about these commands is beyond the
scope of this book, but make sure you have a good Oracle SQL book,
such as Oracle Database 10g: The Complete Reference, by Kevin Loney
(McGraw-Hill), as a source for all the commands.

Because every release brings new capabilities, keeping up with the new fea-
tures in Oracle is important. Many developers don’t keep up with new features
because “all the old features will still work,” but those developers miss out on
the great new features included in each version. If you do a search for “new
features in PL/SQL” or “new features in Oracle SQL” in Google or your favorite
search engine, you’ll always find many articles and resources to show you the
latest additions to these programming languages.

What Is PL/SQL Good For?
PL/SQL is the language to use when writing code that resides in the database.
In the following sections, we introduce different situations in which you’ll find
PL/SQL useful.

Using database triggers
A trigger is an event within the DBMS that can cause some code to execute
automatically. There are four types of database triggers:

� Table-level triggers can initiate activity before or after an INSERT, UPDATE,
or DELETE event. These are most commonly used to track history informa-
tion and database changes, to keep redundant data synchronized, or to
enhance security by preventing certain operations from occurring. See
Chapter 3 for more information about table-level triggers.

� View-level triggers are very useful. A view is a stored SQL statement
that developers can query as if it were a database table itself. By placing
INSTEAD OF triggers on a view, the INSERT, MODIFY, and DELETE com-
mands can be applied to the view regardless of its complexity, because
the INSTEAD OF trigger defines what can be done to the view. See
Chapter 3 for more information about view-level triggers.

� Database-level triggers can be activated at startup and shutdown. For
example, when the database starts up you might want to test the avail-
ability of other databases or Web services. Before a database shutdown,
you might want to notify other databases and Web services that the
database is going offline.

� Session-level triggers can be used to store specific information. For
example, when a user logs on or off, you might want to execute code

19Chapter 1: PL/SQL and Your Database

05_599577 ch01.qxp 5/1/06 12:10 PM Page 19

that contains the user’s preferences and loads them into memory for
rapid access. When the session closes, a trigger can save the prefer-
ences for future use.

Database and session-level triggers are usually handled by DBAs, and further
discussion of their use is beyond the scope of this book.

Scripting with speed
When writing code, the ability to type a portion of code and execute it without
first saving it to the database is useful. Oracle provides this capability, which
is supported by all PL/SQL IDEs. We discuss this capability in Chapter 2.

Keeping code server-side
The majority of PL/SQL code is stored as program units in the server. A typi-
cal application has many lines of code.

Some programmers, particularly Web-based developers working in the J2EE
or .NET environments, try to write most of their code in the application server
in Java (for J2EE developers) or VB.NET (for .NET developers). This isn’t good
practice. In a database application, much of the logic is devoted to retrieving
and updating information. If the code to accomplish this task resides in an
application server, it must send a request to the database over a network. Then
the database must process the request and send the information back across
the network for the application to process. Because networks and computers
are now very fast, you might think that this would take only fractions of a
second. Although this is the case for a single request, if a very complex applica-
tion requires millions or even hundreds of millions of interactions with the
database, multiplying the number of interactions by even fractions of a second
can lead to very poor performance.

Even relatively simple operations requiring only a few database requests can
be problematic if the application is being accessed by hundreds, thousands,
or tens of thousands of users simultaneously. It is much more difficult to
build a database-intensive application without using server-side coding than
it is to write all the code to run in an application server.

One of the arguments against writing server-side code is that the application
won’t be portable (can’t be moved from one platform to another). However,
most organizations using Oracle have been using it for a very long time (ten
or more years) and aren’t contemplating a switch to a different platform. Also,
Web development is currently in a state of rapid flux. Organizations frequently
change between .NET, J2EE, and other environments for their Web-based
application development.

20 Part I: Basic PL/SQL Concepts

05_599577 ch01.qxp 5/1/06 12:10 PM Page 20

Both the .NET and J2EE environments are in flux, as well. In the J2EE environ-
ment, the industry standard for Web development a year or so ago was to
create JavaServer pages (JSPs). Currently, the industry standard is to work in
the JSP/Struts environment. In the next year or so, JavaServer Faces (JSFs)
will likely become the industry standard. Therefore, code written in the
middle-tier runs a high risk of needing to be rewritten in the future.

Server-side code runs faster, is easier to maintain and test, and is less suscep-
tible to change than code placed in the middle tier. Therefore, creating signifi-
cant portions of an application in the database is a better approach.

There are a number of places where you can write code that your applications
can use. We discuss each in turn:

� Portions of applications: PL/SQL program units can return a set of values
(functions), or PL/SQL routines can perform database operations (proce-
dures). These functions and procedures may be called by other functions
and procedures or (in the case of functions) used in SQL statements.
PL/SQL routines may be as large and complex as you need them to be.
Some complex routines may contain thousands of lines of code. Entire
systems may contain millions of lines of code. Chapter 3 covers the cre-
ation of functions and procedures and how to place them into packages.

� PL/SQL code embedded in views: Oracle allows you to embed code in
database views. The code might actually be located in one of two places
in the view. First, you can place correctly crafted functions returning a
value in the SELECT portion of a SQL statement to retrieve additional infor-
mation, which might or might not be part of the tables being queried. For
example, you can create a view of a Customer table with a function that
would return the amount currently owed, even if this amount involves a
complex calculation and is not stored in the Customer table.

You can also embed PL/SQL in INSTEAD OF triggers on a view. These
triggers allow you to perform INSERT, UPDATE, and DELETE operations
on complex views, with PL/SQL programmatically handling how these
operations should be handled. Chapter 6 tells you about embedding
code in views.

� Batch routines: Batch routines run code that processes a large number of
records at the same time. Generating invoices for every customer in a
system or processing payroll checks for an entire organization are exam-
ples of batch routines. These routines are usually large, complex, and data-
base intensive. This type of routine should assuredly be written in PL/SQL.

Programming for Oracle Developer
Oracle Developer used to be the Oracle Corporation’s primary application
development tool. More recently, Oracle’s JDeveloper has been used for Java-
based applications. However, many organizations still use Oracle Developer

21Chapter 1: PL/SQL and Your Database

05_599577 ch01.qxp 5/1/06 12:10 PM Page 21

for internal application development — mostly development for systems that
handle things like payroll.

Oracle Developer consists of two main parts:

� Oracle Forms: A user interface screen building tool

� Oracle Reports: A reporting tool

Both of these tools use PL/SQL as their programming language. The advan-
tages to this are numerous, because the code used to create the applications
is the same as that used in the database itself. Because the J2EE and .NET
environments have emerged, developers must use one programming lan-
guage for applications and a separate language for server-side development.
Although Oracle made some efforts to make Java work within the Oracle
database as PL/SQL does, the efforts weren’t entirely successful.

If you’re involved in a new project, the probability of using Oracle Forms is
fairly low. Most new development isn’t being done in Forms. However, many
organizations are still using large Forms-based systems that require ongoing
modifications and enhancements.

For reporting, Oracle Reports is still the primary tool for working with Oracle
databases. It continues to be enhanced. Further discussion of Oracle Devel-
oper is beyond the scope of this book. For more information, see Oracle
Developer: Advanced Forms & Reports, by Peter Koletzke and Dr. Paul Dorsey
(McGraw-Hill).

22 Part I: Basic PL/SQL Concepts

05_599577 ch01.qxp 5/1/06 12:10 PM Page 22

Chapter 2

The PL/SQL Environment
In This Chapter
� Installing the Oracle database

� Using tools

� Understanding users and connections

� Looking at sample data

Before you can start working with PL/SQL, you need a place to write and
run your programs as well as a database (preferably populated with

some sample data) that your programs can interact with. You might be lucky
enough to be working at a company where someone can help you set up and
install everything. Or, you might be completely on your own and need to do
everything yourself.

Installing an Oracle environment isn’t the same as installing a simple
Windows application. You can’t just put the CD in the drive and have it all
magically install for you. You need to set up the right environment. This
involves installing the Oracle database and the necessary tools to allow you
to write, edit, and debug the code. In this chapter, you discover what you
need to do to start writing and testing your PL/SQL code.

Depending upon your particular system configuration and where you’re
working, you might need some help from a database administrator (DBA) to
get everything set up correctly the first time.

Setting Up an Oracle Environment
When setting up your environment, you need several components (although
you can create a pared down version if you just want to get up to speed with
PL/SQL, which this chapter also explains how to do).

06_599577 ch02.qxp 5/1/06 12:10 PM Page 23

If you want to set up a typical PL/SQL environment, you need the following
components:

� Database server: This is a computer (or set of computers) that runs the
Oracle database. Oracle runs in many popular computer environments.
The most commonly used with Oracle are UNIX, Linux, or some version
of Microsoft Windows.

PL/SQL usually runs on the database server. But Oracle also has a
number of products that can use PL/SQL (Forms Developer 10g, Reports
Developer 10g, and so on).

� Database Management system (DBMS): This is the Oracle software
itself. This software is installed on the database server. You must have
this installed prior to creating a database.

� Database: A database is primarily a set of tables and data that constitute
the persistent (permanent) information for your system. You will also
store many other things in the database such as code, indexes (to help
queries run faster), and so on. Most of the interesting things you can do
with a database (for example, Java classes, snapshots, and links to other
databases) are beyond the scope of this book.

When you install the database software, Oracle gives you the option of
installing a sample database. If you take advantage of this option, it can
help you get started.

� Application server: This is the computer where your application code is
stored and executed. Now that most application development is done
for the Web, you need a place to store and execute these programs.
Those programs are usually executed on an application server. They can
also be run on any common operating system, but are usually run on
Microsoft Windows or UNIX.

� Application server software: To make applications work on an applica-
tion server, you need special software to manage and run those programs.
Various products that are available can do this. The most commonly used
products are Orion and Apache. In an Oracle environment, you often see
Oracle’s own application server, called Internet Application Server (IAS),
which is an extension of the Orion server software.

� Client computer and software: Batch routines are usually run directly
on the database server, but client programs are run from a PC. Web
applications are run on an Internet browser, and client/server programs
execute directly on the client PC. Web applications mainly run on the
application server and present the screen output to the client machine
only through the browser.

� Network: The database server, application server and client computers
have to be able to talk to each other through some kind of network or

24 Part I: Basic PL/SQL Concepts

06_599577 ch02.qxp 5/1/06 12:10 PM Page 24

over the Internet. However, a discussion of how to network computers
together is beyond the scope of this book. For an introduction to net-
working, Networking For Dummies, 7th Edition, by Doug Lowe (Wiley
Publishing, Inc.) can help.

If you’re setting up an environment just to figure out how PL/SQL works, you at
least need access to a database server and a client PC. If you’re trying to learn
from home, you can put everything on the same computer. (This assumes that
you have a fairly powerful PC; see the hardware and software requirements in
the next section for details.) If you run everything from a PC, you can’t build a
really large database but you can build a big enough database to try every
technique that this book demonstrates.

Hardware and Software Requirements
If you’re connecting to an existing Oracle database on a dedicated server, you
don’t need a very powerful machine. However, if you want to run the entire
Oracle environment on the same PC, you need a PC with sufficient resources to
run smoothly. You can use Oracle’s listed minimum requirements as a guideline
for the required hardware and software. However, you’ll have an easier time if
you have the following hardware and/or software resources available:

� CPU: Intel Pentium 4 or AMD Athlon 1.5 GHz and up. Of course, faster
processors are always better, but any reasonable CPU made in the last
few years should be sufficient.

� Memory: 1GB or more. Memory is the most critical resource.

� Hard disk drive: 2.5GB or more free. The database by itself might use
about 1.5GB, but it is also nice to have the entire documentation library
on your local machine, which takes up about 1GB unzipped.

� Operating system:

• Microsoft-based: MS Windows 2000 or MS Windows XP. Windows NT
is a bit too old, and Windows 95/98/ME weren’t designed to run
such complex applications.

• UNIX-based: If your workstation is UNIX-based, you’re probably
pretty technical already. We do suggest that you check the OTN (at
www.oracle.com/technology/support/metalink/index.
html) for any issues you will need to consider. (For details about
OTN, see the following section.)

� Security software: Oracle uses multiple TCP/IP ports, so be careful
when configuring firewalls. If the database is trying to access something

25Chapter 2: The PL/SQL Environment

06_599577 ch02.qxp 5/1/06 12:10 PM Page 25

via TCP/IP, don’t block it. This issue arose recently when Microsoft pro-
vided a built-in firewall for Windows XP Service Pack 2, and many users
had configuration problems. Therefore, expect some firewall messages
to pop up after the installation.

Accessing the Oracle
Technology Network

Oracle Corporation supports a forum to publicize technical information
called the Oracle Technology Network (OTN). The OTN contains a wealth of
information for Oracle professionals. Because PL/SQL is the language of
Oracle databases, the OTN includes many valuable resources to help you dis-
cover how to use PL/SQL effectively.

The OTN Web site gives you access to learning materials, discussion forums,
documentation libraries, and best of all, a place from which to download the
software. Because of the large size of some of the files, a reasonably fast con-
nection speed is probably a must.

Although you need an environment in which to practice using PL/SQL, your
boss might not like you playing with a production database. And if you think
that an Oracle license is too expensive to buy for home use, you’re probably
right. Luckily, you can set up everything you need at home. After registering
on OTN, you can download all the necessary software for free.

To register, go to the OTN Web site (www.oracle.com/technology/index.
html) and click the New OTN Visitors link. Then click the Join OTN link, and
on the next page, click the line to create an account. Registration is free, very
simple, and should take you only a minute or two.

After you register, you’re all set to download whatever you need. The first
thing you’ll see on the download page is the following disclaimer:

“All software downloads are free, and each comes with a development
license that allows you to use full versions of the products only while
developing and prototyping your applications. You can buy Oracle prod-
ucts with full-use licenses at any time from the online Oracle Store or
from your Oracle sales representative.”

So, you’re allowed to download and use any of the Oracle software free of
charge as long as you’re just getting to know Oracle.

26 Part I: Basic PL/SQL Concepts

06_599577 ch02.qxp 5/1/06 12:10 PM Page 26

Installing the Database
Many versions of the Oracle database are in use all over the world, and com-
bined with the various operating systems you might be using, it’s beyond the
scope of this book to explain the entire installation process in detail. However,
we do offer some general information in this section to get you started.

As of this writing, the most current version is called Oracle Database 10g. For
getting to know PL/SQL, you should install the latest version of 10g available
for your environment. This will allow you to practice with all the available
new features. With every release, Oracle improves the PL/SQL language by
adding new features and improving performance.

Which version should you use? The Enterprise Edition is preferable because
it includes some features that you might be interested in later during your
work with PL/SQL.

After you’ve downloaded the appropriate version of the database, you need
to install it. Here’s some helpful information that you should be aware of
during the database installation process:

� Be sure to record the service name of the database when you install it.

� A preconfigured database with example schemas is very helpful. (Schemas
are sets of objects belonging to the particular database user. If an object
belongs to the user SCOTT, it is part of schema SCOTT.) Anyone with at
least some Oracle experience recognizes these schemas, because all the
Oracle tutorials and manuals are based on them.

� Don’t forget to unlock and set passwords for the most common schemas
(SCOTT, HR, OE). The SCOTT schema is used often in examples in this
book.

� The OTN contains a lot of useful information, including the whole
Oracle documentation library (www.oracle.com/technology/
documentation/index.html). Check out the Quick Installation Guide
(preferable for beginners) or the Installation Guide for installation details
specific to your operating system. Both guides include steps that are
fairly easy to follow.

If you’ve had some experience in installing other large products, you should
be able to successfully install the database. Of course, as with any complex
software, you might have some problems, but many Internet resources are
available to help you if necessary.

27Chapter 2: The PL/SQL Environment

06_599577 ch02.qxp 5/1/06 12:10 PM Page 27

Working with Code
After you have the database installed, the next question is, “Where will you
run all these PL/SQL programs?” The answer isn’t as simple as you might
think. The ultimate goal is productivity, and you can create PL/SQL programs
from numerous tools.

SQL*Plus
If you’ve already been working with Oracle, you’ve probably heard of
SQL*Plus. This tool is installed with all versions of Oracle (both server and
client). The main purpose of SQL*Plus is to provide quick and easy access to
the database in both interactive and batch modes. Compared to the leading
GUI development tools, SQL*Plus is a relatively primitive tool that most pro-
fessional developers rarely use.

You can run SQL scripts, PL/SQL scripts, and other scripts by using the inter-
nal command language of SQL*Plus by itself. Many developers do all their
work by using SQL*Plus because they don’t trust the fancy GUI tools.

Several versions of SQL*Plus are available after completing the installation of
the Oracle database:

� The command line interface shown in Figure 2-1 is the most widely used
tool because it can be called from any operating system batch language.

� The basic SQL*Plus GUI tool consists of a wrapper around the same
command line interface, as shown in Figure 2-2. It has some GUI features
such as the ability to set options in the special form, but it can hardly be
called very user friendly.

Figure 2-1:
The

command
line

interface.

28 Part I: Basic PL/SQL Concepts

06_599577 ch02.qxp 5/1/06 12:10 PM Page 28

� iSQL*Plus is the Web interface shown in Figure 2-3. It is the latest one
and has some nice features, but it also might require some workarounds
to deal with timeout settings and security patches.

Because SQL*Plus is included with all Oracle configurations, it remains
extremely popular despite its relatively minimal capabilities. For more details
about SQL*Plus, you can find a lot of documentation on OTN as well as many
custom scripts. It isn’t necessary to know a lot about SQL*Plus, but under-
standing some basics about how to run/save/edit scripts could be useful in
case you’re limited to SQL*Plus.

Figure 2-3:
The Oracle
i SQL*Plus

Web
interface.

Figure 2-2:
The basic

PL/SQL
GUI tool.

29Chapter 2: The PL/SQL Environment

06_599577 ch02.qxp 5/1/06 12:10 PM Page 29

Oracle SQL Developer
In the first part of 2006, Oracle added a new tool to the mix — Oracle SQL
Developer (formerly known as Project Raptor). It’s a free Java-based graphi-
cal environment targeted at database developers. With SQL Developer, you
can browse database objects, run SQL statements and SQL scripts, and edit
and debug PL/SQL statements. The Oracle SQL Developer interface is shown
in Figure 2-4.

Currently, this product it still in the “Early Adopter” phase, although it is a
good alternative to the command line interface. The authors do not recom-
mend using it in production systems without significant testing, but SQL
Developer looks very promising. If you don’t have access to a more mature
third-party tool, we recommend trying it (see http://www.oracle.com/
technology/products/database/sql_developer/index.html to
download it).

Third-party tools
In addition to SQL*Plus and newly born Oracle SQL Developer, a number of
other tools enable you to work with PL/SQL. The reason for using any one
of these is to make your life easier. Of course, any GUI might have bugs/
restrictions/issues, but overall the pros usually outweigh the cons. Here are
a few popular options:

Figure 2-4:
The Oracle

SQL
Developer
interface.

30 Part I: Basic PL/SQL Concepts

06_599577 ch02.qxp 5/1/06 12:10 PM Page 30

� Toad from Quest Software: Toad is the most popular PL/SQL coding
tool on the market. It includes a nice editing environment for SQL and
PL/SQL. However, the most distinctive feature of Toad is a very powerful
set of administrative tools. Toad provides a full working environment for
DBAs and power users.

� SQL Navigator from Quest Software: SQL Navigator, another product
from Quest Software, has a more limited audience. It is built by Oracle
developers for Oracle developers. Everything there is optimized for writ-
ing PL/SQL or SQL as quickly and effectively as possible. It isn’t as useful
for DBAs, but its add-ons and overall functionality make it a very attrac-
tive option for server-side developers.

� RapidSQL from Embarcadero: RapidSQL, another major development-
centered tool, is focused on working with the whole IT environment.
Because Embarcadero targets more enterprise-wide solutions, RapidSQL
has many features that might just get in the way and be confusing for the
PL/SQL beginner. However, RapidSQL does include everything you need
to maximize your productivity.

For more information, you can read a set of reviews of these tools at www.
orafaq.com/tools/index.htm. The site might not always discuss the
most up-to-date versions, but it does include enough details to help you find
the right tool for your needs.

Establishing a Database Connection
After you install the database, you need to perform a few more steps before
you can connect to a database. In the sections that follow, we outline each
step. Connecting to the database after installation is also the simplest way to
verify that you have installed everything correctly.

Before you connect to the database, it’s important to understand how Oracle
handles user accounts. In Oracle, the concept of a user (and a set of objects
that belong to user is called a schema, as you already know) is one of the
major elements of the system. Here are the important points you need to
understand about accounts and how they relate to connecting to a database:

� The only way of connecting to the database is by providing a username
and password. So you need to know the user/password account to which
you will connect. If you installed the database yourself, you will have a
user account called SYSTEM with whatever password you specified
during installation. Otherwise ask for help from your organization’s DBA.

Oracle includes sample schemas (SCOTT, HR, and OE), and you should
have unlocked them and set their passwords during the installation. If
you didn’t do it, a bit farther on you find commands for doing it manually.

31Chapter 2: The PL/SQL Environment

06_599577 ch02.qxp 5/1/06 12:10 PM Page 31

� Users can be created/dropped/modified/locked from any administrative
account.

� All objects in the database (tables, procedures, and so on) belong to
some user.

� Users have privileges and roles (sets of privileges). These roles govern
which users can do what. Users could have system privileges (for exam-
ple, the right to connect) or object privileges (the right to create a table
or to update data in somebody else’s table).

� Users can grant privileges (such as the right to select the data from the
table or execute the procedure) on their objects to other users.

Checking the operating services
First, you need to validate that the appropriate operating system services are
running. In Windows-based systems, you can find the list of services running
under Control Panel\Administrative Tools\Services. Oracle usu-
ally installs a lot of them but the core ones are

� OracleService<your service name>: This is the database itself
and represents all processes and memory elements.

� OracleOraDb10g_home1TNSListener (That is a naming convention
in Oracle 10g. In other versions, look for the service that has TNSListener
in the name.) This is a special utility that listens for connection requests
from the client applications and routes them to the appropriate data-
base processes of the main service.

Connecting with your username
To verify the database connection, you must connect as user SYSTEM because
you need all administrative privileges to perform the necessary tasks.

If you see the Connected To message shown earlier in Figure 2-1 (assuming
you’re using the 10g database), congratulations! You successfully connected
to the database, which means that you have installed everything correctly.

The syntax to connect via SQL*Plus from the command line looks like the
following:

C:\>sqlplus user/password@database

This is exactly the way you’ll connect to the database to run the test scripts
in this book, or you can use one of the third-party tools we mention earlier in
this chapter.

32 Part I: Basic PL/SQL Concepts

06_599577 ch02.qxp 5/1/06 12:10 PM Page 32

Unlocking (or locking) accounts
Now it’s time to unlock the accounts you’ll need to use to master PL/SQL. The
syntax of this command should be clear. It allows the user to lock or unlock
any existing accounts. If an account is locked, this means that even if the user
has all privileges, he/she still won’t be able to connect. However, other users
will be able to access objects of the locked account if they have the privileges
to do so. Use the following line of code to lock or unlock your account:

alter user YOUR_USER account [unlock|lock];

You can unlock the HR, OE, and SCOTT schemas by using the following code:

SQL> alter user hr account unlock;
User altered.
SQL> alter user oe account unlock;
User altered.
SQL> alter user scott account unlock;
User altered.
SQL>

You should receive a “User altered” response after typing each line and press-
ing Enter.

Each of these accounts contains sample data that you can use with the exam-
ples in this book. The sample data connected with these accounts is
described later in this chapter.

Resetting passwords
The next step is to reset passwords by using the syntax shown in the follow-
ing line of code. (You don’t need to do it for SCOTT — The password is
always TIGER.)

alter user YOUR_USER identified by YOUR_PASSWORD;

After you fire the following code, you can connect as any of these users:

SQL> alter user hr identified by hr;
User altered.
SQL> alter user oe identified by oe;
User altered.
SQL>

To reconnect as another user, you don’t need to close SQL*Plus. Simply use
the CONNECT command, as shown here for the HR schema (assuming that
ORA10G is a service name of the database you specified during installation):

33Chapter 2: The PL/SQL Environment

06_599577 ch02.qxp 5/1/06 12:10 PM Page 33

SQL> connect hr/hr@ora10g
Connected.
SQL>

You should receive the response “Connected.”

Setting up the server to communicate
Before running anything, you have one more step to complete. You need to
enter the following command:

Set serveroutput on

This special command allows the server to communicate back to you because,
by default, server output is turned off. This communication will be critical in
the future. In most third-party tools, you can enable server output by clicking
an icon on the toolbar.

The Basics of PL/SQL Programs
With your environment set up, you’re ready to explore some fundamentals of
PL/SQL programs. The following sections describe some of the basic syntax
you need to know in order to work with PL/SQL.

Writing a simple program
The simplest kind of PL/SQL code is called an anonymous block. An anony-
mous block is a block of code that has its own DECLARE/BEGIN/END struc-
ture. Anonymous blocks can either stand on their own (as shown here) or
they can sit within any other PL/SQL program.

declare
...
<Declaration part => Chapter 3,6>
...

begin
...
<Procedural part => Chapter 4>
...

exception
...
<Exception handler => Chapter 5>
...

end;

34 Part I: Basic PL/SQL Concepts

06_599577 ch02.qxp 5/1/06 12:10 PM Page 34

The declaration section defines all variables, cursors, subprograms, and
other elements to be used in the code. This section is optional, and you may
skip it if no variables or other program elements need to be declared. You
find out how to declare variables and subprograms in the Chapter 3 — and
about cursors in Chapter 6.

The procedural section contains the main body of the routine. It starts with the
begin keyword and ends with the exception keyword or the end keyword if
you have no exception section. This is the only mandatory part of the code.

You must have at least one line of executable code in the procedural section.
If you don’t want anything to execute in the program unit, you can use the
NULL command to indicate that nothing should be executed.

The exception section is also optional. It allows the program to intercept and
process special conditions that could happen at runtime (divide by zero,
duplicate value of the primary key, and so on). We discuss exceptions in
more detail in Chapter 5.

Now you’re ready to write your first program. At the SQL*Plus prompt that
you get after you successfully connect, type the following:

SQL> declare
2 v_string_tx varchar2(256):=’Hello, World!’;
3 begin
4 dbms_output.put_line(v_string_tx);
5 end;
6

Each complete line of the PL/SQL code must end with a semicolon (;).

To run the code, type / at the beginning of the first blank line after the last
line of the code This is a SQL*Plus command to execute the last SQL or
PL/SQL statement. If you’re using a third-party tool, you’ll probably click a
Run icon to accomplish the same task. The result is the following:

SQL> declare
2 v_string_tx varchar2(256):=’Hello, World!’;
3 begin
4 dbms_output.put_line(v_string_tx);
5 end;
6 /

Hello, World!
PL/SQL procedure successfully completed.
SQL>

This code indicates that the command was successfully sent to the server and
the server processed it. How will you know that the program did something? In
the earlier section, “Setting up the server to communicate,” you set SERVER
OUTPUT to ON. This allows the server to “talk” to you. The DBMS_OUTPUT.

35Chapter 2: The PL/SQL Environment

06_599577 ch02.qxp 5/1/06 12:10 PM Page 35

PUT_LINE command sends whatever text you passed as a parameter back to
the client console. Because you received Hello, World! back, you have
absolute proof of execution.

Of course, simply writing anonymous blocks isn’t enough to make PL/SQL
usable. Although you can store your routines as anonymous blocks and pass
them to the command line, this is definitely not the most convenient method.

Creating stored procedures
You can store PL/SQL code inside the database. (See Chapter 3 for additional
information about this topic.) For example, you could store the first PL/SQL
routine from the preceding section as a standalone procedure. Stored proce-
dures use a slightly different syntax, shown here:

create or replace procedure p_hello
is

v_string_tx varchar2(256):=’Hello, World!’;
begin

dbms_output.put_line(v_string_tx);
end;

These few lines of code constitute a PL/SQL program that creates a stored
procedure in the database.

When the procedure exists in the database, you can easily call the routine
and get the same result as before, as shown here:

SQL> create or replace procedure p_hello
2 is
3 v_string_tx varchar2(256):=’Hello, World!’;
4 begin
5 dbms_output.put_line(v_string_tx);
6 end;
7 /

Procedure created.
SQL>begin
2 p_hello;
3 end;
4 /

Hello,World!
PL/SQL procedure successfully completed.
SQL>

Passing parameters to procedures
You could even go a step farther. Like any other programming language,
PL/SQL allows you to pass parameters to procedures as shown here:

36 Part I: Basic PL/SQL Concepts

06_599577 ch02.qxp 5/1/06 12:10 PM Page 36

Create or replace procedure p_helloTo (i_tx varchar2)
is

v_string_tx varchar2(256):=’Hello, ‘||i_tx||’!’;
begin

dbms_output.put_line(v_string_tx);
end;

In this case, you can pass whatever string you want into the procedure and
the server will pass the message back with the modified string:

SQL> begin
2 p_helloTo(‘Everybody’);
3 end;
4 /

Hello, Everybody!
PL/SQL procedure successfully completed.
SQL> _

Examining the Sample Data
The history of sample data sets in Oracle databases started when Oracle
was still called the Software Development Laboratories. At that time, Oracle
Corporation had a developer named Bruce Scott whose daughter had a cat
named Tiger. As a result, even in the latest version of the Oracle database,
you can still find the sample schema SCOTT with password TIGER. If you
need more complicated sample data, the Human Resources (HR) and Order
Entry (OE) schemas are also available.

The Scott/Tiger schema
Anyone who has ever worked with an Oracle database has used the Scott/
Tiger schema tables. The information contained in those tables is very basic
but will allow you to explore the relationships among the tables and under-
stand how a relational database works. In the Oracle 10g database, that
schema consists of the four tables shown in Figure 2-5.

The table descriptions for this schema are as follows:

� DEPT contains a list of departments in the organization.

� EMP contains a list of employees in the organization (including the orga-
nization tree).

� SALGRADE is a dictionary to identify the appropriate salary grade.

� BONUS contains bonuses for employees (empty by default).

37Chapter 2: The PL/SQL Environment

06_599577 ch02.qxp 5/1/06 12:10 PM Page 37

Throughout this book, we help you interact with these tables as you discover
how to communicate with the database by using PL/SQL.

The Human Resources (HR) and
Order Entry (OE) schemas
As time passed and the Oracle database matured, the old Scott/Tiger schema
was not robust enough to demonstrate many of the abilities of the DBMS.
Currently, several schemas are available. The most popular ones are HR
(Human Resources) and OE (Order Entry). Even though we are not using HR
and OE schemas in this book, you should be aware of them, because the
latest Oracle tutorials and manuals use HR and OE.

The HR and OE schemas are significantly more complex than good old SCOTT.
HR is a direct descendant of SCOTT and targeted for beginners. It has seven
tables with a relatively small number of rows in each and does not involve any
complex datatypes.

The OE (Order Entry) schema is more complex, with emphasis placed on the
multiple datatypes supported by Oracle. Objects from that schema reference
ones in the HR schema, so using OE without HR is impossible.

Both of these schemas can provide sample data and tables as you write pro-
grams and discover the features of PL/SQL.

DEPT

DEPTNO NUMBER(2,0) PRIMARY KEY
DNAME VARCHAR2(14)
LOC VARCHAR2(13)

BONUS

ENAME VARCHAR2(10)
JOB VARCHAR2(9)
SAL NUMBER
COMM NUMBER

SALGRADE

GRADE NUMBER
LOSAL NUMBER
HISAL NUMBER

EMP

EMPNO NUMBER(4,0) PRIMARY KEY
ENAME VARCHAR2(10)
JOB VARCHAR2(9)
MGR NUMBER(4,0)
HIREDATE DATE
SAL NUMBER(7,2)
COMM NUMBER(7,2)
DEPTNO NUMBER(2,0)

Figure 2-5:
The Scott/

Tiger
schema

data model.

38 Part I: Basic PL/SQL Concepts

06_599577 ch02.qxp 5/1/06 12:10 PM Page 38

Part II
Getting Started

with PL/SQL

07_599577 pt02.qxp 5/1/06 12:10 PM Page 39

In this part . . .

The four chapters in this part describe some of the
important concepts that you need to understand in

order to be a PL/SQL programmer.

Chapter 3 describes the PL/SQL programming language
and how it fits into the overall database environment.
There are brief sections about the different PL/SQL struc-
tures and how to create reusable portions of code. You
also find out about important extras that you need to be a
successful programmer.

Chapter 4 introduces the important concepts of control
structures, conditions, and loops and how to use them
effectively in your programming.

Chapter 5 explains how to handle many different types of
code exceptions.

Chapter 6 shows you how PL/SQL and SQL work together
and discusses the important topic of cursors.

07_599577 pt02.qxp 5/1/06 12:10 PM Page 40

Chapter 3

Laying the Groundwork:
PL/SQL Fundamentals

In This Chapter
� Using PL/SQL as a programming language

� Understanding lexical program units

� Benefiting from reusable PL/SQL code

� Discovering PL/SQL extras

P L/SQL is a procedural language that interacts with the Oracle database.
It can access all the capabilities of SQL. In addition, it allows developers

to use the functionality typically associated with programming languages. For
example, PL/SQL supports variables, arrays, exceptions, and flow of control
statements. It allows developers to structure their code into subprograms,
which include packages, triggers, functions, and procedures. This chapter
introduces the important concepts you need to understand when writing and
working with PL/SQL code.

PL/SQL As a Programming Language
Computer languages allow people to give instructions to computers. There
are generic languages (Java or C++) as well as functional languages (PL/SQL
or COBOL). Generic languages allow programmers to implement just about
anything, but functional languages have a more limited scope.

PL/SQL is a perfect example of a functional language because it is designed to
provide easy and effective communication with a relational database. PL/SQL
allows you to create procedural logic for data processing in the database.

08_599577 ch03.qxp 5/1/06 12:11 PM Page 41

Before you find out about PL/SQL in more depth, you need to recognize its
limitations:

� If data can be manipulated via SQL, the logic to do so should be placed
in SQL because the Oracle SQL engine is the most effective way to
process data.

� Very large mathematical calculations should be taken out of the data-
base. C++ is significantly more efficient for handling them.

� File operations are not the strongest feature of the database. The pur-
pose of the DBMS is to process data, not to serve as a substitute for the
operating system.

The point is to use PL/SQL for the tasks for which it was designed, namely to
provide procedural programming by using relational data, and not try to
stretch it beyond its intended purpose.

Anonymous PL/SQL Blocks
PL/SQL can be run as a fully interpreted language. (In the 9i Release2 and 10g
versions, you can create compiled versions of your code, but that topic is
beyond the scope of this book). This means that you can communicate with
the database engine in real time without any explicit compilation steps.
Therefore, if you’ve established an open connection to the database, you can
send messages and get responses.

PL/SQL uses code constructs called procedural blocks. These blocks contain
commands and sets of commands, which can be named or anonymous.

We introduce the basic structure of a procedural block in Chapter 2. For easy
reference, we show it again here:

<<MAIN>>
declare

...
Declaration section
...

begin
...
Procedural section
...

exception
...
Exception handler
...

end;

42 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 42

Anonymous blocks can be nested (in the procedure and exception blocks) in
as many levels as you want, as shown in this simple example:

<<MAIN>>
declare

...
Declaration section
...

begin
...
Procedural section
...

<<SUB1>>
declare
...
begin
...
end;

...
exception

...
end;

Because Oracle doesn’t process PL/SQL code line by line, but instead handles
whole messages at one time, the root anonymous block containing all sub-
elements is one logical unit. This means that all references and errors are
analyzed in the context of that unit.

You can label all blocks (including nested ones) by using identifiers enclosed
in << >>. This notation allows programmers to reference elements of differ-
ent blocks.

Introducing the Lexical Set of Elements
The PL/SQL lexical set of elements consists of identifiers, delimiters, literals,
and comments.

When you create these elements in PL/SQL, you use the standard English
character set, so the valid characters are as follows:

� Upper- and lowercase letters: A–Z and a–z

� Numerals: 0–9

� Symbols: () + - * / < > = ! ~ ^ ; : . ‘ @ % , “ # $ & _ | { } ? []

� Tabs, spaces, and carriage returns

We describe each briefly in the following sections.

43Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 43

Identifiers
Identifiers are names of PL/SQL program items and units. These items and
units could be of different kinds — constants, variables, exceptions, cursors,
cursor variables, subprograms, and packages. When creating identifiers, be
sure to keep the following in mind:

� An identifier cannot exceed 30 characters. Every character, including
dollar signs, underscores, and number signs, is significant. For example,
v_index_nr and vindex_nr represent two different things.

� An identifier consists of a letter optionally followed by more letters,
numerals, dollar signs, underscores, and number signs. Some exam-
ples of valid and invalid identifiers are shown here:

• v_index_nr (valid)

• v$index_nr (valid)

• v index_nr (invalid because of the space)

• 5_index_nr (invalid because it starts with a number)

• v-index_nr (invalid because it contains -, a hyphen)

� By default, identifiers are not case sensitive, so v_index_nr and
V_Index_NR are the same. Although you can now make some elements
case sensitive in the Oracle environment, you shouldn’t do this because
Oracle has historically been case insensitive, and other programmers
and developers won’t expect the code to pay attention to case.

� Identifiers may not be the same as reserved words (for example, you
cannot use the word end as a variable name). Check any PL/SQL
manual for a complete list of reserved words.

Delimiters
A delimiter is a simple or compound symbol that has a special meaning in PL/
SQL. For example, you use delimiters to represent arithmetic operations such
as addition and subtraction. A list of PL/SQL delimiters is shown in Table 3-1.

Table 3-1 PL/SQL Symbols
Delimiter Description

+, -, *, / Addition, subtraction/negation, multiplication, division

% Attribute indicator

‘ Character string delimiter

44 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 44

Delimiter Description

. Component selector

(,) Expression or list delimiter

: Host variable indicator

, Item separator

“ Quoted identifier delimiter

= Relational operator

@ Remote access indicator

; Statement terminator

:= Assignment operator

=> Association operator

|| Concatenation operator

** Exponentiation operator

<<, >> Label delimiter (begin and end)

/*, */ Multi-line comment delimiter (begin and end)

-- Single-line comment indicator

. . Range operator

<, >, <=, >= Relational operators

<>, ‘=, ~=, ^= Different version of NOT EQUAL

Literals
Literals are explicit numeric, character, string, or Boolean values not repre-
sented by an identifier. You can find more information about literals in the
“Literals as variable values” section, later in this chapter.

Comments
Comments are used to indicate that what follows should be ignored by the
PL/SQL interpreter. Comments usually serve the purpose of explaining some
hidden rules or logic in the code to other developers.

45Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 45

PL/SQL allows two types of comments: single and multi-line.

Single-line comments start with a delimiter -- and go to the end of the line,
as shown here:

declare
-- here you should declare variables,
-- constants, etc.

...
begin
-- here you place your code

...
end;

Multi-line comments start with /* and end with */. These delimiters may
span as many lines as needed. An example is shown here:

declare
/* This code is written by Michael Rosenblum

Dec 20 2005 */
...

begin
...

end;

Always include enough comments to make your code readable. When doing
so, keep in mind that you can’t nest comments. For pointers on how you can
write effective comments that will help others understand your code, see
Chapter 9.

Working with Constants and Variables
Constants and variables create a set of elements to be used in coding.
Although constants and variables are common to almost all programming
languages, the way a particular language handles them varies. This section
outlines the basics of constants and variables in PL/SQL. You find out how to
declare variables, assign values to them, define their scope, and more.

Declaring variables
In PL/SQL, variables must be included in the declaration block before they can
be used. There are a number of ways to declare a variable. The most common
way is by using a direct declaration, as shown here:

46 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 46

declare
variable_name [constant] DATATYPE

[DEFAULT value |DEFAULT NULL];
begin

...

Variable names are PL/SQL identifiers. Therefore all the rules that apply to iden-
tifiers, which we explain earlier in this chapter, also apply to variable names.

The datatype of the variable may be a standard SQL datatype (NUMBER,
VARCHAR2, DATE) or a PL/SQL datatype (BOOLEAN, BINARY_INTEGER).

The keyword constant means that the variable’s value can’t be changed in the
body of the program. If you declare a variable as a constant, you must assign
a default value to it by using the optional DEFAULT value clause.

If you don’t use a DEFAULT clause, the variable will have a NULL value, indi-
cating that the variable has been declared but not yet initialized. This means
that, although you can reference the variable, it doesn’t have any value, and
all operations involving that variable have no meaning and produce no result.
We share more information about working with NULL values in Chapter 4.

The following shows an example of correct declarations of variables:

declare
v_sal_nr NUMBER;
v_name_tx VARCHAR2(10) DEFAULT ‘KING’;
v_start_dt DATE := SYSDATE; -- same as DEFAULT SYSDATE

begin
...

You can also declare a variable by reference (%TYPE for simple variables and
%ROWTYPE for variables that can store the whole row) as shown in Listing 3-1:

Listing 3-1: Declaring a Variable by Reference

declare
variable_name table.column%TYPE; ➞2
variable_name2 variable_name%TYPE; ➞3
variable_row table%ROWTYPE; ➞4

begin
...

Here’s what happens in Listing 3-1:

➞2 Declares that the variable has the same datatype as the specified
column.

➞3 References a variable already defined in the code. (You can’t do
forward referencing.)

47Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 47

➞4 Creates a record variable that can store all the columns from the
row in the specified table. In addition to tables, views, cursors,
and other record variables could be also used as a point of refer-
ence. (You can read more about record variables in Chapter 11.)

Defining datatypes by reference is extremely useful and decreases the
amount of program maintenance required, because changing the datatype of
a column in the database does not require searching for all the places where
that column is referenced. Changes are inherited automatically and on the fly.

The following code shows some examples of defining datatypes:

declare
v_empno1 emp.empNo%TYPE;
v_empno2 v_empNo%TYPE;
v_dept_rec dept%ROWTYPE;

begin
...

There are some restrictions on the declaration of variables:

� There is no forward declaration.

� Multiple declarations supported in some languages are not allowed in
PL/SQL, as shown here:

declare
v1_nr, v2_nr NUMBER; -- INVALID
-- VALID
v1_nr NUMBER;
v2_nr NUMBER;

begin
...

Assigning values to variables
There are a number of ways to assign a value to a variable. A simple one is
shown in Listing 3-2:

Listing 3-2: Assigning a Value to a Variable

declare
v_length_nr NUMBER DEFAULT 5; ➞2
v_height_nr NUMBER := 4; ➞3
v_width_nr NUMBER;
v_volume_nr NUMBER;
v_min_nr NUMBER;

48 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 48

begin
v_width_nr := 3; ➞8
v_volume_nr:= v_length_nr*v_width_nr*v_height_nr; ➞9
v_min_nr := least(v_length_nr,v_width_nr,v_height_nr);

end;

Listing 3-2 works as described here:

➞2 This is the default assignment. You can use either the keyword
DEFAULT or an assignment operator :=).

➞8 Assigns a literal to the variable.

➞9 Assigns the result of the operation to the variable.

➞10 Assigns the result of the SQL built-in function to the variable.

Taking a step farther, you can assign SQL query results to PL/SQL variables,
as shown here:

declare
v_name_tx VARCHAR2(256);

begin
select eName
into v_name_tx
from emp

where empNo=7369;
end;

Literals as variable values
All values in the text of the program are denoted as alphanumeric representa-
tions, or literals.

Two types of numeric literals exist:

� Integer literals represent optionally signed numeric values without deci-
mal points.

� Real literals represent optionally signed whole or fractional numbers
with decimal points.

SQL and PL/SQL aren’t good at enforcing datatypes, and usually literals are
dynamically converted to be the same type as the variables to which they are
being assigned. However, the way in which you define the literal might have
significant side effects, especially when communicating with languages like
Java. Some examples of assigning literals of both types are shown in Listing 3-3.

49Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 49

Listing 3-3: Examples of Integer and Real Literals

declare
v_int1_nr BINARY_INTEGER :=5; -- integer
v_int2_nr BINARY_INTEGER :=-5; -- integer
v_int3_nr BINARY_INTEGER :=0; -- integer
v_int4_nr BINARY_INTEGER :=+5; -- integer

v_real1_nr NUMBER :=5.0; -- real ➞7
v_real2_nr NUMBER :=5.; -- real ➞8
v_real3_nr NUMBER :=-7.123; -- real
v_real4_nr NUMBER :=0.5; -- real ➞10
v_real5_nr NUMBER :=.5; -- real ➞11
v_real6_nr NUMBER :=0.0; -- real ➞12
v_real7_nr NUMBER :=2/3; -- real

begin
...

The following are additional details about Listing 3-3:

➞7–8 If you use a decimal point, the literal automatically becomes real
even though the value could still be an integer.

➞10–11 In the Oracle environment, you don’t have to place a zero before
the decimal point, so 0.5 and .5 are exactly the same.

➞12 Zero could also be represented as a real number, using the nota-
tion 0.0.

Numeric literals cannot contain dollar signs or commas, but they can be writ-
ten in scientific notation, as shown here:

declare
v_real1_nr NUMBER:=$123456.00; -- INVALID
v_real2_nr NUMBER:=123,456.00; -- INVALID
v_real3_nr NUMBER:=5e10; -- VALID
v_real3_nr NUMBER:=5e-3; -- VALID

begin
...

Oracle supports scientific notation for numbers between 1.0 × 10–130 and 1.0 ×
10126 (or between 1E-130 and 1E × 126, where E stands for “times ten to the
power of.”)

Character and string literals in the Oracle world are enclosed by single quotes,
as shown here:

declare
v_char_tx CHAR(1):=’H’;
v_text1_tx VARCHAR2(10) :=’Hello’;
v_text2_CHAR(1) :=’’; -- the same as NULL

begin
...

50 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 50

Assigning an empty string to the character variable is exactly the same as
assigning NULL to it.

Because the single quote character is used to enclose the whole string, the
process of writing code can get a bit tricky if you need to have those charac-
ters as a part of the text, as shown in Listing 3-4.

Listing 3-4: Using Single Quote Characters as Part of Text Strings

declare
v_text1_tx VARCHAR2(50) :=’It’’s Misha’’s text.’; ➞2
v_text2_tx VARCHAR2(50) :=q’!It’s Misha’s text.!’; ➞3
v_text3_tx VARCHAR2(50) :=q’[It’s Misha’s text.]’; ➞4

begin
...

Here’s what Listing 3-4 is doing:

➞2 Represents the old way of placing quotes inside the text, namely
to double them.

➞3 Starting with Oracle 10g, you can declare the whole string to be
enclosed in quotes by using the construct q’!text!’. Using this
approach, you can type the string exactly as you want it to appear.

➞4 You can use other delimiters (not only !, but </>, [/], {/}, and
(/)) to declare the start and end of a quoted string. In this line, the
text does not end with a period but with a real exclamation point
so you must replace the string delimiter with something else.

Text literals in Oracle are case sensitive. This means that ‘text’ and
‘Text’ are two different literals.

Understanding the scope of variables
By definition, the scope of a variable is a region of a program unit (block, sub-
program, or package) from which you can reference the variable. As you work
with variables in your programs, knowing their scope is important because
you don’t want variables to collide and either render your code unworkable or
make your code perform in unexpected ways. You also need to understand
where to declare your variable so that it works with all the relevant code.

Avoiding conflicts of variable scope
When considering how to avoid scope problems, the key guideline to follow
is that all identifiers within the same scope must be unique. In some program-
ming languages, you can have variables of the same name but different
datatypes. PL/SQL doesn’t allow this, as shown here:

51Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 51

declare
v_amount_nr NUMBER;
v_amount_nr BINARY_INTEGER; -- duplicate!!!

begin
...

Also, although it isn’t explicitly prohibited, you should never use variable
names that could match column names in the database. In SQL statements,
the names of database columns take precedence over the names of local vari-
ables and formal parameters, as shown here:

declare
ename VARCHAR2(10):=’KING’;

begin
update emp
set sal = sal * 10
where eName = eName; -- WRONG!!!

end;

Running the preceding code updates everyone’s salary because Oracle will
compare the column to itself, not to your variable. To avoid this situation,
use naming conventions as suggested in Chapter 8.

The bold line in the following code shows the proper way to perform the
salary update:

declare
v_eName_tx VARCHAR2(10):=’KING’;

begin
update emp
set sal = sal * 10
where eName = v_eName_tx; -- CORRECT!

end;

Controlling scope with a variable declaration
When working with variables and scope, you need to understand what makes
a variable visible, local, or global:

� A variable is visible only in blocks from which you can reference the
identifier by using an unqualified name.

� A variable is local to the block where it is declared.

� A variable is global to all sub-blocks of the block where it is declared.

In the following code, variable V_STR1_tx is local for the block labeled
<<MAIN>> and global for the block labeled <<SUB>>. Variable V_STR2_tx is
visible only in the block <<SUB>>.

52 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 52

<<MAIN>>
declare

v_str1_tx VARCHAR2(10);
begin

v_str1_tx :=’ABC’; -- local
<<SUB>>
declare

v_str2_tx VARCHAR2(1);
begin

v_str1_tx:=’ABC’; -- local
v_str2_tx:=’A’; -- global and visible

end;
v_str1_tx :=’ABC’; -- local

end;

You can use the same variable name for multiple levels of anonymous blocks.
However, labels on blocks are optional. The following example doesn’t include
them, but that doesn’t change the behavior of the code. Only local variables
are visible, as shown here:

declare
v_str1_tx VARCHAR2(10);

begin
declare

v_str1_tx VARCHAR2(2);
begin

v_str1_tx:=’ABC’; -- INVALID
v_str1_tx:=’AB’; -- valid

end;
v_str1_tx:=’ABC’; -- valid

end;

Because variable V_STR1_tx is declared in both blocks, in the inner block only
the local one is visible. This means that you can assign only a two-character
value to it (in this case, AB). Outside the inner block, you can assign up to a
ten-character value to the variable because now the visible variable V_STR1_
tx is of type VARCHAR2(10).

Later in this chapter, you find out about the scope and visibility of other
types of identifiers beyond variables in the PL/SQL environment.

Building Expressions with Operators
By definition, expressions are constructed by using operands and operators.
An operand is a variable, constant, literal, or function call that contributes a
value to an expression. An operator like + or - indicates what the program

53Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 53

should do with the operands. An example of a simple expression is shown in
Listing 3-5.

Listing 3-5: An Example of a Simple PL/SQL Expression

declare
v_i1_nr NUMBER;
v_i2_nr NUMBER;

begin
v_i1_nr:=10/3; ➞5
v_i2_nr:=-vi1_nr; ➞6

end;

Check out what happens in Listing 3-5:

➞5 Represents an example of a binary operator / which requires two
operands.

➞6 Represents a unary operator -, which requires only a single
operand.

PL/SQL doesn’t have an operator that can process three operands, so com-
plex expressions are resolved as a sequence of unary and binary operations.
That sequence is built based on the precedence of operators. Table 3-2 shows
the precedence of operators in PL/SQL organized from highest to lowest.

Table 3-2 PL/SQL Operator Precedence
Operator Description

** Exponentiation

+, - Identity, negation (unary operation)

*, / Multiplication, division

+, -, | | Addition, subtraction, concatenation

=, <, >, < =, > =, <>, !=, ~= Comparison
IS NULL, LIKE, BETWEEN, IN

NOT Logical negation

AND Conjunction

OR Inclusion

Operations with higher precedence are applied first. Operators with the same
precedence are applied in their text order, as shown here:

54 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 54

Expression: 2+3*4 =>
Action: ^ (multiplication has higher precedence)
Next step: 2+12
Action: ^ (the last operation left)
Result: 14

Expression: 2*3*4 =>

Action: ^ (first operation of the same type)
Next step: 6*4
Action: ^ (the last operation left)
Result: 24

You can change the execution order by using parentheses. If the expression
includes parentheses, the execution starts with the innermost pair, as shown
here:

Expression: ((2+3)*4+5)*6 =>
Action: ^ (innermost parenthesis)
Next step: (5 *4+5)*6
Action: ^ (highest precedence in parenthesis)
Next step: (20 +5)*6
Action: ^ (operation in parentheses)
Next step: 25*6
Action: ^ (the last operation left)
Result: 150

Don’t be afraid to insert extra parentheses to logically separate parts of a
statement or condition. By doing this, you can be sure that the code will exe-
cute correctly.

Logical operators in PL/SQL are based on exactly the same concepts as in
any other language, as shown in Table 3-3.

Table 3-3 Logical Operators in PL/SQL
x y x AND y x OR y NOT x

True True True True False

True False False True False

False True False True True

False False False False True

55Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 55

Cases involving NULL values are covered in Chapter 4, where you find out
more about using logical expressions to build conditional logic.

All SQL logical operators (IN, LIKE, BETWEEN) are also valid in PL/SQL, and
we discuss them in Chapter 4.

Running Anonymous Blocks of Code
As we explain earlier in “Anonymous PL/SQL Blocks,” PL/SQL can use an
interpreter to run code. This means that when you finish typing the code, it is
ready to be executed. You have a number of ways to do this. The easiest is to
use SQL*Plus (which we introduce in Chapter 2) and type everything there.
An example is shown here:

SQL> set serveroutput on
SQL> declare
2 v_length_nr NUMBER :=5.5;
3 v_width_nr NUMBER :=3.5;
4 v_area_nr NUMBER;
5 begin
6 v_area_nr:=v_length_nr*v_width_nr;
7 DBMS_OUTPUT.put_line(‘Area:’||v_area_nr);
8 end;
9 /

Area:19.25
PL/SQL procedure successfully completed.
SQL>

As we discuss in Chapter 2, the command SET SERVEROUTPUT ON turns on
the communication channel from the database back to the client session.
Therefore, it’s a waste of time to repeat it over and over again. Use it any time
you’re using the procedure DBMS_OUTPUT.PUT_LINE.

Identifying common mistakes
If you mistype something when you run code in your IDE, PL/SQL does a sep-
arate parsing step to check for errors. Then it tries to execute whatever you
typed. If the parse fails, it returns an error, as shown here:

SQL> declare
2 v_length_nr NUMBER :=5.5;
3 v_width_nr NUMBER :=3.5;
4 v_area_nr NUMBER;
5 begin

56 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 56

6 v_area_nr:=v_length_nr*v_width_nr;
7 DBMS_OUTPUT.put_line(‘Area:’||area_nr);
8 end;
9 /
DBMS_OUTPUT.put_line(‘Area:’||area_nr);

*
ERROR at line 7:
ORA-06550: line 7, column 35:
PLS-00201: identifier ‘AREA_NR’ must be declared
ORA-06550: line 7, column 5:
PL/SQL: Statement ignored
SQL>

In this example, the name of the variable was incorrectly typed. As a result,
the code can’t be parsed. Oracle tried to provide as much information as pos-
sible about the source of the problem. Usually, you will receive a useful hint
about where to look.

Oracle doesn’t process one line at a time; you’re sending the whole block at
once, so Oracle checks the block as a whole for logical consistency. As a
result, if you get a parsing error, you can be sure that nothing from the code
you passed was executed. This point comes up again in Chapter 13 when build-
ing dynamic PL/SQL on the fly. In that case, you might encounter a parsing
error at runtime, but all code before the line with the error will be executed.

Oracle error messages are usually very helpful for common structural issues
such as:

� Missing parenthesis (We recommend that you count them.)

� Incorrect operators (such as = instead of := for assignment of values)

� Mistyped names of operators or variables

Spotting compilation errors
Compilation errors are shown in an error stack. (See Chapter 5 for more infor-
mation.) Using the length, width, and area example, you’re looking for any error
starting with PLS- indicating that you have something wrong with your code.

Recognizing semicolon-related errors
When you have a missing semicolon, the error message you see might not
identify the problem as clearly as in earlier examples. Listing 3-6 is an exam-
ple of this error and the resulting message.

57Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 57

Listing: 3-6: Error Messages

SQL> declare
2 v_length_nr NUMBER :=5.5;
3 v_width_nr NUMBER :=3.5;
4 v_area_nr NUMBER;
5 begin
6 v_area_nr:=v_length_nr*v_width_nr ➞6
7 DBMS_OUTPUT.put_line(‘Area:’||area_nr); ➞7
8 end;
9 /
DBMS_OUTPUT.put_line(‘Area:’||area_nr);
*

ERROR at line 7:
ORA-06550: line 7, column 5:
PLS-00103: Encountered the symbol “DBMS_OUTPUT” when

expecting one of the following:
. (* @ % & = - + ; < / > at in is mod remainder not rem
<an exponent (**)> <> or != or ~= >= <= <> and or like
between || member SUBMULTISET_
The symbol “.” was substituted for “DBMS_OUTPUT” to

continue.
SQL>

➞6–7 Oracle tries to give you as much information as possible. In this
case, line 7 started with something strange. But the same message
can be restated as “previous line did not end correctly.” This is
the most common mistake in the world of PL/SQL. There is no
semicolon at the end of line 6, so Oracle doesn’t know that the line
ended. It tried to parse the next line as a part of the previous one
and returned an error.

Another common error is a missing semicolon after the END statement, as
shown here:

SQL> declare
2 v_length_nr NUMBER :=5.5;
3 v_width_nr NUMBER :=3.5;
4 v_area_nr NUMBER;
5 begin
6 v_area_nr:=v_length_nr*v_width_nr;
7 DBMS_OUTPUT.put_line(‘Area:’||area_nr);
8 end
9 /

end
*

ERROR at line 8:
ORA-06550: line 8, column 3:
PLS-00103: Encountered the symbol “end-of-file” when

expecting one of the following:
; <an identifier> <a double-quoted delimited-identifier>
The symbol “;” was substituted for “end-of-file” to

continue.

58 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 58

Unfortunately, this error message isn’t completely self-explanatory. If you
didn’t end the last line of the block with an appropriate symbol (;), Oracle
tries to look for more code. Because there is no more code, “end-of-file”
is returned.

Creating Reusable PL/SQL Code
When creating computer programs, you often need to repeat the same task
over and over again. To automate this repetitive kind of activity, all complete
computer languages include the idea of reusable code modules or subprograms.

Traditionally, two kinds of subprograms exist:

� Procedures are simply wrapped code containers that usually represent
some task or part of a task. They don’t have to return anything to the
main routine. For example, if you need to process some textual informa-
tion and print results, this could be defined as an independent task and
implemented as a procedure.

� Functions serve as user-defined operators and return a value to the call-
ing routine. For example, they can calculate the factorial value of an inte-
ger and return the value to the main routine or calculate whole
expressions (validate text, substitute special characters) and return
them to the main routine.

The only difference between procedures and functions is that functions return
some value to the main routine.

There is one more critical element of subprograms to keep in mind regarding
procedures. You shouldn’t need to create a printing procedure for all the pos-
sible strings you’re planning to pass. You should write a procedure that takes
a value and processes it the way you want, or you can define a parameter of
the procedure. In functions, you use parameters in the same way.

Wrapping a task into a procedure
Listing 3-7 shows an example of a PL/SQL procedure.

Listing 3-7: A Procedure Example

declare
v_tx VARCHAR2(50):= ‘I just printed my <in> line!’;➞2
procedure p_print ➞3

(i_string_tx in VARCHAR2, ➞4

(continued)

59Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 59

Listing 3-7 (continued)
i_replace_tx in VARCHAR2 := ‘new’)

is
begin

DBMS_OUTPUT.put_line(replace(i_string_tx,
‘<in>’, i_replace_tx));

end; ➞10
begin

p_print (v_tx,’first’); ➞12
p_print (v_tx,’second’); ➞13
p_print (v_tx); ➞14

end;

Here are the details about this listing:

➞2–3 All variables must be declared before declaring any subroutines,
such as this procedure.

➞3–6 The procedure declaration starts with the keyword IS and is pre-
ceded by a specification. The specification consists of two parts:

• Header: You need to name a procedure according to the
standard rules for PL/SQL identifiers.

procedure name

• Optional Parameter List: The list is enclosed in parenthe-
ses. Parameters are separated by commas and each has
the form:

variable1 [type] datatype [DEFAULT value]

Parameter names will be used inside the procedure, so be sure
to differentiate them from variables in the routine by using a dis-
tinctive naming convention. For example, you can prefix them, as
we recommend in Chapter 8.

Procedures may have three types of parameters: IN (the default
type; an input value will be passed by the calling routine), OUT,
and IN OUT. We discuss these parameters in more detail later in
this chapter.

Procedures may have up to 256 parameters. The datatypes of
these parameters are more generic than the datatypes of regular
variables. You don’t need to define the length of strings as in line
4 of Listing 3-7. Parameters can have default values.

➞4–10 In general, a procedure has the same structure as an anonymous
block — namely an optional declarative block, mandatory proce-
dural block, and optional exception block. Although the proce-
dural and exception blocks are similar, the declaration of a
procedure is very different. In an anonymous block, you can
simply use DECLARE and you’re ready to go.

➞12–14 Always place a semicolon at the end of each procedure call.

60 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 60

By default, you pass parameters into the procedure in the order in which
they were declared. You can use variables, expressions, or literals as parame-
ters as long as they are of the correct datatype or can be automatically con-
verted to the correct datatype. So, 999 and ‘999’ could be used in a lot of
cases both as a string and as text.

If you want to stop the execution of the procedure because of some addi-
tional logic, you can use the RETURN command. For example, in Listing 3-7, if
you don’t want to process anything in case the main routine passed NULL,
you can modify the p_print procedure as shown in Listing 3-8.

Listing 3-8: Stopping Procedure Execution

procedure p_print (i_string_tx in VARCHAR2,
i_replace_tx in VARCHAR2 := ‘new’) is

begin
if i_string_tx is null ➞4
then

return; ➞6
end if;
DBMS_OUTPUT.put_line(replace(i_string_tx,

‘<in>’, i_replace_tx));
end;

Here are the details about the listing:

➞4 Checks to see whether or not the passed string is null.

➞6 Immediately finishes the routine.

Because of early condition checking, you can be sure that the code won’t
waste any machine resources on useless activities that could have significant
performance effects on your code.

Returning values with functions
Listing 3-9 is an example of a function. This function calculates the differ-
ences between total areas of circles with a number of radii.

Listing 3-9: A Function Example

declare
v_pi_nr NUMBER:=3.14; ➞2
function f_getDiff_Nr(i_rad1_nr NUMBER,i_rad2_nr NUMBER)
return NUMBER is

v_area1_nr NUMBER;
v_area2_nr NUMBER;
v_out_nr NUMBER;

(continued)

61Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 61

Listing 3-9 (continued)
function f_getArea_Nr (i_rad_nr NUMBER) ➞9
return NUMBER
is
begin
return v_pi_nr*(i_rad_nr**2); ➞13

end;

begin
v_area1_nr := f_getArea_Nr (i_rad1_nr); ➞17
v_area2_nr := f_getArea_Nr (i_rad2_nr);
v_out_nr :=v_area1_nr-v_area2_nr;
return v_out_nr; ➞20

end;
begin
DBMS_OUTPUT.put_line

(‘Diff between 3 and 4: ‘||f_getDiff_Nr(4,3));➞24
DBMS_OUTPUT.put_line

(‘Diff between 4 and 5: ‘||f_getDiff_Nr(5,4));
DBMS_OUTPUT.put_line

(‘Diff between 5 and 6: ‘||f_getDiff_Nr(6,5));
end;

Here’s what you see in Listing 3-9:

➞3, 9 There are two nested functions, one inside the other. Each sub-
program (procedures too) can have its own subprograms.

Like procedures, functions have a specification block that starts
with the keyword FUNCTION and may include parameters. They
also include a unique specification clause, RETURN datatype.
That datatype declares what kind of data the function will return.
As with procedures, you don’t need to define the parameter pre-
cision or length.

➞13, 20 Because the primary role of the function is to return something,
the body of all functions must have at least one RETURN state-
ment (line 13 for the inner function and line 20 for the outer func-
tion). Like procedures, that clause signals the immediate end of
the execution of the subprogram. Unlike procedures (where you
don’t need to return anything, just end the routine), functions
require you to return a variable (line 20) or expression (line 13)
that is compatible with the declared datatype.

You need to be careful when defining conditional logic. (You can
find more information about IF and CASE statements in Chap-
ter 4.) If the function ends without executing a RETURN com-
mand, there will be an error.

➞17 Directly assigns the result of the function to the variable. The
result of the function can be used as any variable or expression
(line 24).

62 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 62

Parameters of subprograms
In previous examples, we show you how data can be passed to subprograms
by using parameters. But there are really two kinds of parameters:

� Formal parameters are variables that you define in the declaration part of
the subprogram (for example, variables i_rad1_nr and i_rad2_nr are
formal parameters of the function F_GetDiff_NR from Listing 3-9). These
are the only elements of the subprogram visible to the outside world.

� Actual parameters are what you pass from the main program into the
subprogram. (In Listing 3-8, you passed literals 3, 4, 5, and 6 to the func-
tion F_GetDiff_NR, so these were actual parameters of that function.)
Depending upon the type of formal parameter, actual parameters could
be literals, variables, expressions, and so on. If you have more than one
layer of subprogram, the formal parameter on a higher level could be an
actual parameter of the lower one (for example, variable i_rad1_nr is
an actual parameter of function f_getArea_Nr and a formal parameter
of function f_getDiff_Nr).

If possible, Oracle dynamically converts datatypes of actual parameters to
match formal parameters.

There are three types of formal parameters in subprograms: IN, OUT, and IN
OUT, which we discuss in the following sections.

IN Parameters
IN parameters are used to pass values into the subprogram. A variable serving
as a formal parameter can be referenced inside the subprogram (its scope is
the same as that of any local variable), but can’t be changed, as shown here:

function f_getArea_Nr (i_rad_nr NUMBER)
return NUMBER
is
begin

if i_rad_nr is null -- legal
then
-- i_rad_nr:=10; -- ILLEGAL
return null;

end if;
return 3.14*(i_rad_nr**2); -- legal

end;

Because the formal parameter of type IN is really a constant and works in
only one direction (from the main program to subprogram), the actual para-
meter of the subprogram could be any PL/SQL element that contains a value
(literal, constant, initialized variable, expression, result of function), as
shown here:

63Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 63

declare
v_out_nr NUMBER;
v_in1_nr CONSTANT NUMBER :=5;
v_in2_nr NUMBER :=4;

function f_getArea_Nr (i_rad_nr NUMBER)
return NUMBER is
begin

return 3.14*(i_rad_nr**2);
end;

begin
v_out_nr:=f_getArea_Nr(10); -- literal
v_out_nr:=f_getArea_Nr(v_in1_nr); -- constant
v_out_nr:=f_getArea_Nr(v_in1_nr); -- variable
v_out_nr:=f_getArea_Nr(2+3); -- expression
v_out_nr:=f_getArea_Nr(abs(2/3)); -- another function

end;

OUT Parameters
An OUT parameter returns a value to the main program and allows you to return
more than one variable from the subprogram. In this case, the actual parameter
is always a variable. It works as a placeholder and waits for a subprogram to
return something. The formal parameter is also a variable initialized with NULL
that could be used in any normal operation, as shown in Listing 3-10.

Listing 3-10: An OUT Parameter Example

SQL> declare
2 v_hour_nr NUMBER:=12; ➞2
3 v_min_nr NUMBER:=20; ➞3
4 procedure p_split (i_date_dt DATE,
5 o_hour_nr OUT NUMBER, o_min_nr OUT NUMBER)
6 is
7 begin
8 DBMS_OUTPUT.put_line(o_hour_nr||’/’||o_min_nr);
9 o_hour_nr:=to_NUMBER(to_char(i_date_dt,’hh24’));
10 o_min_nr :=TO_CHAR(i_date_dt,’mi’);
11 DBMS_OUTPUT.put_line(o_hour_nr||’/’||o_min_nr);
12 end;
13 begin
14 p_split(sysdate, v_hour_nr, v_min_nr);
15 DBMS_OUTPUT.put_line (
16 ‘Total minutes:’||(v_hour_nr*60+v_min_nr));
17 end;
18 /
/
0/33
Total minutes:33
PL/SQL procedure successfully completed.

64 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 64

Here are additional details about Listing 3-10:

➞2–3 In the example, variables v_hour_nr and v_min_nr are actual
parameters. The default values will be overridden when the proce-
dure is executed.

➞8 From the logical side, o_hour_nr and o_min_nr are formal para-
meters that serve as variables and are initialized with NULL values.

➞9–10 Sets values of OUT parameters.

➞11 Gets output.

Changes to actual parameters happen only when the subprogram ends suc-
cessfully. This means that if there are any errors inside a subprogram, the
values of actual parameters don’t change. Because actual parameters change
only if a subprogram successfully completes, you can always be sure that you
won’t change something by mistake; however, this is possible with high-level
global variables on lower programmatic levels.

IN OUT parameters
You can use IN OUT parameters for both input to and output from the sub-
program. If the actual parameter already had some value, the formal parame-
ter is initialized with that value, as shown here:

SQL> declare
2 v_hour_nr NUMBER:=12;
3 v_min_nr NUMBER:=20;
4 procedure p_split (i_date_dt DATE,
5 o_hour_nr IN OUT NUMBER, o_min_nr IN OUT NUMBER)
6 is
7 begin
8 DBMS_OUTPUT.put_line(o_hour_nr||’/’||o_min_nr);
9 o_hour_nr:=to_NUMBER(to_char(i_date_dt,’hh24’));
10 o_min_nr :=to_char(i_date_dt,’mi’);
11 DBMS_OUTPUT.put_line(o_hour_nr||’/’||o_min_nr);
12 end;
13 begin
14 p_split(sysdate, v_hour_nr, v_min_nr);
15 DBMS_OUTPUT.put_line (
16 ‘Total minutes:’||(v_hour_nr*60+v_min_nr));
17 end;
18 /
12/20
0/33
Total minutes:33
PL/SQL procedure successfully completed.

65Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 65

Although you can include OUT and IN OUT parameters in functions, this
practice isn’t recommended. Doing this confuses not only other developers,
but also the Oracle engine itself. There are also a number of side effects that
might be very difficult to trace.

You can pass parameters into subprograms in a number of ways. Previously
you saw positional notation where you pass parameters in the same order
that they appear in the specification.

But you can also have default values for parameters. In that case, the ques-
tion arises: How do you avoid passing parameters that you would like to keep
as default? If these parameters are the last ones, you can just avoid them, as
shown here:

declare
procedure p_print
(i_str1_tx VARCHAR2 :=’hello’,
i_str2_tx VARCHAR2 :=’world’,
i_end_tx VARCHAR2 :=’!’) is
begin

DBMS_OUTPUT.put_line(i_str1_tx||’,’
||i_str2_tx||i_end_tx);

end;
begin

p_print(‘Hi’,’anybody’,’...’); -- both parameters
p_print(‘Hi’,’people’); -- without the last
p_print(‘Hi’); -- only the first
p_print(); -- no parameters
p_print; -- no parenthesis

end;

All five function calls shown in the preceding code are legal. You can cut as
many parameters as you want (one, two, or even all three) from the end. If you
don’t want to pass any parameters to a function/procedure, you don’t need to
type the parentheses. The last two p_print lines are semantically equivalent.

If you want to pass only the last parameter, you can do this by using named
notation, where you explicitly define which actual parameter corresponds to
each formal one, as shown in Listing 3-11.

Listing 3-11: Using Named Notation

declare
procedure p_print
(i_str1_tx VARCHAR2 :=’hello’,
i_str2_tx VARCHAR2 :=’world’,
i_end_tx VARCHAR2 :=’!’) is
begin

DBMS_OUTPUT.put_line(i_str1_tx||’,’
||i_str2_tx||i_end_tx);

end;

66 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 66

begin
p_print(i_str2_tx=>’people’); -- just the second
p_print(i_end_tx=>’...’); -- just the third
p_print(i_end_tx=>’...’,i_str2_tx=>’people’); -- mix

➞13
end;

➞13 The => operator indicates explicit pairs. Because you’re naming
parameters explicitly, you don’t need to use any specific order.

To add flexibility, you could use mixed notation where you start defining
actual parameters in order, but after some point, use explicit names. For
example, you could use mixed notation to avoid the second parameter, but
keep the first and third, as shown here:

declare
procedure p_print
(i_str1_tx VARCHAR2 :=’hello’,
i_str2_tx VARCHAR2 :=’world’,
i_end_tx VARCHAR2 :=’!’) is
begin

DBMS_OUTPUT.put_line(i_str1_tx||’,’
||i_str2_tx||i_end_tx);

end;
begin

p_print(‘Hi’,i_end_tx=>’...’); -- mixed
p_print(i_str1_tx=>’Hi’,i_end_tx=>’...’); -- pure named

end;

Storing PL/SQL in the Database
Although you can store PL/SQL programs in the file system as text files and
execute them as needed, in a production environment, storing your code in
the database is significantly more efficient.

To manage the storage of code in the database, keep the following important
points in mind.

� Know what code already exists so you don’t reinvent the wheel.

� Know which database objects (tables, views, or sequences) are used in
what modules.

� Know what side effects could be caused by changes in PL/SQL logic.

� Know what side effects could be caused by changes in the database
environment.

67Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 67

The best way to manage code in the database is by using stored procedures.
They allow you to store your code in the database in a special “parsed”
mode. This way, Oracle can easily extract all references to other database
objects from the code and determine what code is referencing a particular
object. In addition to database management tasks, stored procedures allow
you to create Application Programming Interfaces (APIs) that client applica-
tions and other modules can use.

A number of types of stored procedures exist: procedures, functions, triggers,
and packages. We discuss these briefly in the upcoming sections.

Database procedures and functions
We discuss procedures and functions earlier in this chapter (see “Creating
Reusable PL/SQL Code”), but only as pure PL/SQL procedures. However, they
can also be saved as database elements rather than text in the file system.

To store a procedure or function, you need to connect to the database (this
example uses SQL*Plus) and execute a special command, as shown here:

create [or replace]
procedure procedure name (parameters)
is
...
begin
...
end;

create [or replace]
function function name (parameters)
return ...
is
...
begin
...
end;

The CREATE OR REPLACE procedure/function command tells Oracle to create
a stored procedure. If the stored procedure with the specified name already
exists, you will overwrite it. The first time, you can simply use CREATE, but the
second time produces an error, as shown in the last case here:

SQL> create or replace
2 function f_getArea_Nr (i_rad_nr NUMBER)
3 return NUMBER
4 is
5 v_pi_nr NUMBER:=3.14;

68 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 68

6 begin
7 return v_pi_nr * (i_rad_nr ** 2);
8 end;
9 /

Function created.
SQL> create
2 procedure p_print
3 (i_str1_tx VARCHAR2 :=’hello’,
4 i_str2_tx VARCHAR2 :=’world’,
5 i_end_tx VARCHAR2 :=’!’) is
6 begin
7 DBMS_OUTPUT.put_line(i_str1_tx||’,’
8 ||i_str2_tx||i_end_tx);
9 end;
10 /
Procedure created.
SQL> create
2 procedure p_print
3 (i_str1_tx VARCHAR2 :=’hello’,
4 i_str2_tx VARCHAR2 :=’world’,
5 i_end_tx VARCHAR2 :=’!’) is
6 begin
7 DBMS_OUTPUT.put_line(i_str1_tx||’,’
8 ||i_str2_tx||i_end_tx);
9 end;
10 /
procedure p_print

*
ERROR at line 2:
ORA-00955: name is already used by an existing object

By default, procedures and functions are created in the same Oracle schema
as that of the user connected to the database. This means that if you were
connected as SCOTT, your new function and procedure would belong to the
SCOTT schema.

After functions are created, you can use them as you use built-in PL/SQL or
SQL functions or procedures, as shown here:

begin
p_print(‘Hi’,’anybody’,’...’); -- that is enough!

end;

Packages
A package is a container for your code. It can also contain cursors, types,
global variables, and other constructs that we discuss in later chapters. As
we mention in the preceding section, you can write functions or procedures

69Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 69

and store them in the database. Packages allow you to place those functions
and procedures in a container that helps manage all the program units.

A large system may contain hundreds or even thousands of functions and
procedures. By using packages, you can place these program units into logi-
cal groups.

For example, because you know that both the previously created procedure
and function will be used in the same application module (named TEST1),
you can create the following package by using the CREATE OR REPLACE
PACKAGE command:

create or replace package pkg test1
as

function f_getArea_Nr (i_rad_nr NUMBER) return NUMBER;
procedure p_print (i_str1_tx VARCHAR2 :=’hello’,

i_str2_tx VARCHAR2 :=’world’,
i_end_tx VARCHAR2 :=’!’);

end;
/
create or replace package body pkg_test1
as

function f_getArea_Nr (i_rad_nr NUMBER)
return NUMBER

is
v_pi_nr NUMBER:=3.14;

begin
return v_pi_nr * (i_rad_nr ** 2);

end;

procedure p_print
(i_str1_tx VARCHAR2 :=’hello’,
i_str2_tx VARCHAR2 :=’world’,
i_end_tx VARCHAR2 :=’!’) is
begin

DBMS_OUTPUT.put_line(i_str1_tx||’,’
||i_str2_tx||i_end_tx);

end;
end;
/

Notice how you created two database objects, a package (usually called the
package specification or just spec for short) and a package body. The spec
contains only the function header. This is the visible part of the function and
contains all the information that any code accessing the function needs to
know (the function name, its parameters, and its return type). The actual
function code is placed in the package body.

You can find out more about using packages and package features in Chapter 7.

70 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 70

Triggers
Another way to store PL/SQL code in the database is by using a trigger. By
definition, a trigger is a procedure stored in the database and implicitly run,
or fired, when something happens.

Depending upon the version of Oracle you’re using, different events may fire
a trigger, but these events are always divided into three groups: DML triggers,
INSTEAD OF triggers, and system event triggers. This section includes a
brief overview of each type. For more details, see Chapter 7.

DML triggers
You can place triggers on INSERT/UPDATE/DELETE operations in any table,
as shown in Listing 3-12.

Listing 3-12: DML Trigger Example

create or replace trigger emp_biu ➞1
BEFORE INSERT OR UPDATE ➞2
of sal, comm ➞3
on emp ➞4
for each row ➞5
declare

v_error_tx VARCHAR2(2000);
begin

if :new.comm + :new.sal > 10000 ➞9
then

v_error_tx:=:old.ename||’ cannot have that much!’;
raise_application_error(-20999,v_error_tx);

end if;
end;

The following are some additional details about Listing 3-12:

➞1 Starts with CREATE OR REPLACE TRIGGER.

➞2 Defines an event or group of events with timing of BEFORE or
AFTER the event with which you want to fire the trigger.

➞3–4 Defines the object (line 4) to which the trigger is applied. You can
optionally (line 3) narrow the conditions. In this case, the trigger
fires for updates only if the value of the SAL or COMM column of
the EMP table has changed.

➞5 The last part of the definition before the block of code is the
optional FOR EACH ROW. If you don’t use this clause, the trigger is
executed only once for each statement. An INSERT or UPDATE

71Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 71

statement might affect a number of rows. For this reason, you
need to decide whether you want your trigger to be executed once
for the whole statement (in the case of checking additional privi-
leges about whether the user can alter a specified table) or once
for each processed row (in the case of validating the business rule
that salary plus commissions for each employee can’t exceed
some limit).

➞9–11 Row-level triggers place the old and new values of all columns in
the specified table into special variables, using the format :OLD.
variable_name and :NEW.variable_name. Now you are check-
ing values before they are processed in order to retrieve the old
value after these values have already been overridden. In some
cases, not all variables are available. (For DELETE triggers, all :NEW
values are NULL; for INSERT triggers, all :OLD values are NULL.)

INSTEAD OF triggers
INSTEAD OF triggers are similar to DML triggers, but they exist only on
views. Their main purpose is to perform data modifications of views that are
not otherwise updatable. This feature is extremely powerful because now
you can present data to the end users in the way they want, but under the
hood you perform any activity based on user requests.

The following view isn’t updatable because of the ORDER BY clause:

create or replace view v_emp as
select empNo, eName
from emp
order by eName

However, the end user wants to have a way of changing ENAME here because
there is no access to the real table. This task can be accomplished easily by
using an INSTEAD OF trigger, as shown here:

create or replace trigger v_emp_iu
INSTEAD OF UPDATE
on v_emp
declare

v_error_tx VARCHAR2(256);
begin

if updating(‘EMPNO’)
then

v_error_tx:=’You cannot update the PK!’;
raise_application_error (-20999,v_error_tx);

else
update emp
set eName = :new.eName
where empNo = :old.empNo;

end if;
end;

72 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 72

All INSTEAD OF triggers are fired for each row (there is no such thing as a
statement trigger) and you cannot narrow down the event by column. Instead
you can check to see what columns are updated in the body of the trigger by
using the UPDATING (‘column_name’) clause.

System triggers
There are a number of events where you can set system triggers such as ON
LOGON, ON LOGOFF, ON STARTUP, ON DROP, ON TRUNCATE, and so on. You
can even track when any DDL command (CREATE, DROP, ALTER, and so on)
was executed in the database. You may place system triggers at the database
level or schema level. At the database level, triggers fire for each event for all
users. At the schema level, triggers fire for each event for a specific user.

Although system triggers are very useful for database administrators and
system developers, we recommend that you avoid experimenting with them
until you have a good understanding of how the Oracle environment works.

Interpreting and fixing compilation errors
If you mistype something in an anonymous PL/SQL block, you receive a com-
pilation error. Listing 3-13 shows what happens when you mistype something
when creating stored procedures.

Listing 3-13: Compiling Stored Procedures

SQL> create or replace
2 function f_getArea_Nr (i_rad_nr) ➞2
3 return NUMBER
4 is
5 v_pi_nr NUMBER:=3.14;
6 begin
7 return v_pi_nr * (i_rad_nr ** 2);
8 end;
9 /

Warning: Function created with compilation errors. ➞10
SQL> show errors ➞11
Errors for FUNCTION F_GETAREA_NR:
LINE/COL ERROR
-------- ---
1/31 PLS-00103: Encountered the symbol “)” when

expecting one of the following:
in out <an identifier> <a double-quoted
delimited-identifier> ... LONG_ double ref char
time timestamp interval date binary national
character nchar
The symbol “<an identifier>” was substituted for
“)” to continue.

73Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 73

Here’s what you see in Listing 3-13:

➞2 A common problem is forgetting to define the datatype for an
input parameter.

➞10 Oracle creates the function with compilation errors, which means
that even though the function is stored in the database, you can’t
use it.

➞11 The SQL*Plus environment doesn’t automatically show you what
the problem is with your function, but you can get the error status
of the last command by using the special request SHOW ERRORS.
Now you can try to decipher a real problem from the Oracle com-
piler message.

If a stored procedure was created with compilation errors, it has an INVALID
status. The way to check the status for all stored procedures is by using the
Oracle data dictionary view USER_OBJECTS, as shown here:

SQL> select object_type, object_name, status
2 from user_objects
3 where object_type in (‘FUNCTION’,’PROCEDURE’,
4 ‘PACKAGE’,’PACKAGE BODY’,’TRIGGER’)
5 order by object_type,object_name
6 /

OBJECT_TYPE OBJECT_NAME STATUS
------------------- -------------------- -------
FUNCTION F_GETAREA_NR INVALID
PROCEDURE P_PRINT VALID
...

Now you have to fix the problem and re-create the function. When you get a
response “Function created”, you can start using it.

There is no easy way to view the current version of the function in SQL*Plus,
but you can always query the Oracle data dictionary view USER_SOURCE, as
shown here:

SQL> select text
2 from user_source
3 where name = ‘F_GETAREA_NR’
4 order by line;

TEXT

function f_getArea_Nr (i_rad_nr)

return NUMBER
is

v_pi_nr NUMBER:=3.14;
begin

return v_pi_nr * (i_rad_nr ** 2);
end;
7 rows selected.

74 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 74

By using the USER_SOURCE view in SQL*Plus, you can copy the result into
any text editor, modify it, and paste it back with the appropriate CREATE OR
REPLACE prefix. Note that when you do a search in the Oracle data diction-
ary, all object names are in uppercase.

The reason why you need to know what objects are valid is simple: You might
need to reference them in other stored procedures. Assume that you need to
create another function that uses F_getArea_Nr, as shown here:

SQL> create or replace
2 function f_getDiff_Nr
3 (i_rad1_nr NUMBER, i_rad2_nr NUMBER)
4 return NUMBER is
5 v_area1_nr NUMBER;
6 v_area2_nr NUMBER;
7 v_out_nr NUMBER;
8 begin
9 v_area1_nr := f_getArea_Nr (i_rad1_nr);
10 v_area2_nr := f_getArea_Nr (i_rad2_nr);
11 v_out_nr :=v_area1_nr-v_area2_nr;
12 return v_out_nr;
13 end;
14 /
Warning: Function created with compilation errors.
SQL> show errors
Errors for FUNCTION F_GETDIFF_NR:
LINE/COL ERROR
-------- --
8/3 PL/SQL: Statement ignored
8/17 PLS-00905: object SCOTT.F_GETAREA_NR is invalid
9/3 PL/SQL: Statement ignored
9/17 PLS-00905: object SCOTT.F_GETAREA_NR is invalid

Oracle detects that you’re trying to reference an invalid object, and Oracle
marks the new one as invalid. You can use the following code to fix the first
routine and check the status of the new one:

SQL> create or replace
2 function f_getArea_Nr (i_rad_nr NUMBER)
3 return NUMBER
4 is
5 v_pi_nr NUMBER:=3.14;
6 begin
7 return v_pi_nr * (i_rad_nr ** 2);
8 end;
9 /

Function created.
SQL> select status
2 from user_objects
3 where object_name = ‘F_GETDIFF_NR’;

STATUS

INVALID

75Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 75

Oops. . . . Even though you have fixed the problem, Oracle doesn’t revalidate
dependent objects. The way to manually recompile objects is to use the
ALTER object type object name COMPILE command, as shown here:

SQL> alter function f_getDiff_Nr compile;
Function altered.
SQL> select status
2 from user_objects
3 where object_name = ‘F_GETDIFF_NR’;

STATUS

VALID

For more information about compilation issues, check the Oracle
documentation.

Checking Out PL/SQL Extras
There are many other interesting and useful features in PL/SQL that can
enhance your programming expertise. The following is by no means an
exhaustive list but includes a few more concepts that you should be aware of
when working with PL/SQL.

Overloading calls
You can overload calls, which means that you can declare local or packaged
stored procedures with exactly the same name, as long as their parameters
are different by at least one of these factors: the number of parameters, names
of parameters, order of parameters, or the datatype family of the parameters.
This section shows some examples of each type.

Number of parameters
The following example shows how you can declare a different number of
parameters:

declare
function f_getArea_Nr
(i_rad_nr NUMBER)

return NUMBER
is

v_pi_nr NUMBER:=3.14;
begin

return v_pi_nr * (i_rad_nr ** 2);
end;

76 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 76

function f_getArea_Nr
(i_length_nr NUMBER, i_width_nr NUMBER)

return NUMBER
is
begin

return i_length_nr * i_width_nr;
end;

begin
DBMS_OUTPUT.put_line(‘Area (R=3):’||f_getArea_Nr(3));
DBMS_OUTPUT.put_line(‘Area (2x3):’||f_getArea_Nr(2,3));

end;

In the example, you have two functions with the same name, but the first one
has a single parameter and the second has double parameters. We describe
how Oracle can precisely resolve which function you really need in the sec-
tion “Resolving calls to subprograms.”

Names of parameters
You can overload program units simply by using different names of parame-
ters as long as you use named notation when you call the program units, as
shown here:

declare
function f_getArea_Nr
(i_rad_nr NUMBER, i_prec_nr NUMBER)
return NUMBER

is
v_pi_nr NUMBER:=3.14;

begin
return trunc(v_pi_nr * (i_rad_nr ** 2),i_prec_nr);

end;
function f_getArea_Nr
(i_length_nr NUMBER, i_width_nr NUMBER)
return NUMBER

is
begin

return i_length_nr * i_width_nr;
end;

begin
DBMS_OUTPUT.put_line(‘Area (R=3): ‘

||f_getArea_Nr(i_rad_nr=>3,i_prec_nr=>1));
DBMS_OUTPUT.put_line(‘Area (2x3): ‘

||f_getArea_Nr(i_length_nr=>2,i_width_nr=>3));
end;

Datatype family of parameters
Datatype families are groups of similar datatypes. For example, CHAR and
VARCHAR2 are used to describe exactly the same kind of textual data, so they
belong to the same family.

77Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 77

Distinguishing between datatypes from the same family is a bit difficult.
That’s why you can overload only between different families. The following
code is an example of declaring a different datatype family:

declare
function f_getArea_Nr
(i_rad_nr NUMBER, i_prec_nr NUMBER) return NUMBER is

v_pi_nr NUMBER:=3.14;
begin

return trunc(v_pi_nr * (i_rad_nr ** 2),i_prec_nr);
end;
function f_getArea_Nr
(i_rad_nr NUMBER, i_ignore_yn VARCHAR2) return NUMBER is

v_pi_nr NUMBER:=3.14;
begin

if i_ignore_yn=’Y’ and i_rad_nr < 5 then
return 0;

else
return v_pi_nr * (i_rad_nr ** 2);

end if;
end;

begin
DBMS_OUTPUT.put_line(‘Area (R=3):’

||f_getArea_Nr(3,1));
DBMS_OUTPUT.put_line(‘Area (R=3):’

||f_getArea_Nr(3,’N’));
end;

You can find more information about datatypes in Chapter 10. For now, you
simply need to understand that DATE, VARCHAR2, and NUMBER are from dif-
ferent families.

There are some restrictions on overloading:

� You can’t overload standalone procedures or functions. The second defi-
nition simply overwrites the first one.

� You can’t overload functions that differ only by the datatype of the
return value. If you need to implement this requirement, use overloaded
procedures with OUT parameters.

Resolving calls to subprograms
Calling subprograms is critical to understanding how overloading works. This
activity happens not at the moment of compiling your code, but at runtime,
which is the moment when the Oracle engine is prepared to execute your
subprogram. There are several steps in this process:

78 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 78

1. The Oracle compiler searches for the declaration of the routine that
matches a call starting from the current block up the chain of blocks.
Next, it looks at the list of stored procedures that are either owned or
can be accessed by the current user. If no corresponding names are
found, an error will be returned, such as “PLS-00201: identifier
.. must be declared”.

2. If you’re using named notation to pass parameters, Oracle tries to find a
subroutine with the appropriate parameter names. At this point, you can
narrow the search by cutting out overloads with mismatched names. If
you used positional notation, Oracle skips this step.

3. If, in the previous steps, Oracle found a number of matches (as it should
if you overloaded a subroutine), it should try to find a unique match
between the actual parameters you’re trying to pass to the subroutine
and the formal parameters of each found subprogram. You will get one
of three outcomes:

• An exact match was found and Oracle executed the detected sub-
routine.

• An exact match was not found, so Oracle will extend the search
to all possible permutations of implicit data conversions and
start from the very beginning. (For example, ‘3’ is originally a
string, but also could be implicitly converted to number 3.) Here’s
an example:

declare
function f_getArea_Nr
(i_rad_nr NUMBER)

return NUMBER
is

v_pi_nr NUMBER:=3.14;
begin

return v_pi_nr * (i_rad_nr ** 2);
end;
function f_getArea_Nr
(i_length_nr NUMBER, i_width_nr NUMBER)

return NUMBER
is
begin

return i_length_nr * i_width_nr;
end;

begin
DBMS_OUTPUT.put_line(‘Area (R=3): ‘
||f_getArea_Nr(3));
DBMS_OUTPUT.put_line(‘Area (R=3): ‘
||f_getArea_Nr(‘3’));

end;

79Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 79

Because there is no overload of the function f_getarea_nr with
string parameter, the next valid match is found by successfully
converting a string into a number. In that case, Oracle can find a
unique match.

• More than one match was found so Oracle raised a special error.
Usually this happens if you use default variables in the declaration
of overloaded subroutines (a bad habit) or Oracle wasn’t able to
find any direct matches. Your actual parameter could be implicitly
converted into a number of datatypes at the same time (for exam-
ple, you could convert DATE to both NUMBER and VARCHAR2). In the
following example, Oracle tried to set the default value of the second
parameter in the overloaded function but was unsuccessful:

SQL> declare
2 function f_getArea_Nr
3 (i_rad_nr NUMBER)
4 return NUMBER
5 is
6 v_pi_nr NUMBER:=3.14;
7 begin
8 return v_pi_nr * (i_rad_nr ** 2);
9 end;
10 function f_getArea_Nr
11 (i_length_nr NUMBER, i_width_nr NUMBER:=3)
12 return NUMBER
13 is
14 begin
15 return i_length_nr * i_width_nr;
16 end;
17 begin
18 DBMS_OUTPUT.put_line(‘Area (R=3):’
19 ||f_getArea_Nr(3));
20 end;
21 /
||f_getArea_Nr(3));
*

ERROR at line 19:
ORA-06550: line 19, column 9:
PLS-00307: too many declarations of ‘F_GETAREA_NR’

match this call
ORA-06550: line 18, column 4:
PL/SQL: Statement ignored

Recursion
Oracle PL/SQL supports the coding technique called recursion, which means that
you can call the routine from itself. This technique is used a lot in mathematics.

80 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 80

The most famous example is calculating the factorial of any integer. Because
a factorial is a product of all integer numbers between 1 and a specified inte-
ger, it is defined using the recursive formula (n!=n*(n-1)!). In PL/SQL, this
is written as follows:

create or replace function f_factorial_nr (i_nr NUMBER)
return NUMBER
is
begin

if i_nr = 1
then

return 1;
else

return i_nr*f_factorial_nr(i_nr-1);
end if;

end;

Recursive code can be dangerous; if you forget to specify the moment when
the recursion should stop, you can easily create an infinite loop. An infinite
loop occurs when the logical flow of the program never ends. For this reason,
you should always think about the termination point of the recursion. You
should include a precise termination point (in the example, i_nr=1).

Be sure that you have a precise way of reaching the termination point by
using any branch of logic. In the factorial example with the termination point
defined as i_nr = 1, i_nr would eventually be equal to 1 only if a positive
number were initially passed to the function. If the initial value of i_nr were
0 or a negative number, the program would continue to execute until PL/SQL
runs out of memory. Stable code to handle the preceding factorial example
should look like this:

create or replace function f_factorial_nr (i_nr NUMBER)
return NUMBER
is
begin

if sign(i_nr)=-1 or abs(i_nr)!=i_nr
then

return null;
else

if i_nr = 1
then

return 1;
else

return i_nr*f_factorial_nr(i_nr-1);
end if;

end if;
end;

81Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 81

Each time you call the next level of a recursive routine, a new instance of the
routine is created. This means that it consumes resources (memory, CPU,
network, and so on), so be careful. Even though your program might be logi-
cally correct, you need to keep the limitations of your hardware in mind.

Compiler hints and directives
In low-level computer languages, you can pass variables from a program into
a subprogram in one of two ways:

� By value: This means that a full copy of the variable values is made in
memory. Now the subprogram has its own “clone” of the variable that
can be changed without a major impact on the main one.

� By reference: This means that only a pointer to the location of the origi-
nal variable is passed to the subprogram. The subprogram can access
the value using that pointer. Because it is a real pointer and not a clone,
all the changes to the variable in the subprogram without any extra
activity will be visible to the main program.

Although PL/SQL doesn’t provide this level of granularity, you can give the
compiler a hint (recommendation) that reference memory management could
be used in certain conditions. This is useful if you need to pass a large amount
of data in a procedure that does some kind of validation of textual data, as
shown here:

create or replace procedure p_validate
(io_string_tx IN OUT NOCOPY VARCHAR2)

is
v_invalid_tx VARCHAR2(8):=’!@#$%^&’;

begin
io_string_tx:=replace (io_string_tx,v_invalid_tx);
if length(io_string_tx)>4000
then

io_string_tx:=substr(io_string_tx,1,3997)||’...’;
end if;

end;

As shown in this example, it makes sense to pass the parameter with the hint
NOCOPY. This hint is applicable only to OUT and IN OUT types of variables.

We discuss the restrictions and side effects involved with the NOCOPY hint in
Chapters 11 and 15. For now, you need to remember that you can pass vari-
ables by reference, even in PL/SQL.

82 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 82

In addition to compiler hints in PL/SQL, you can also use compiler directives
(orders). These orders are processed only at runtime. Usually they serve to
enforce special runtime rules or modify runtime conditions. The keyword
PRAGMA command is used for that purpose. You see how this directive is
used in Chapters 5 and 12.

Built-in packages
In addition to the list of standard packages and functions you already might
know from SQL, Oracle provides a group of PL/SQL packages that extend the
capabilities of the language. These packages can send e-mail, schedule jobs,
work with large objects, and more. We describe few of the most commonly
used packages here. For more detailed information about Oracle’s built-in
packages, see Professional Oracle Programming, by Rick Greenwald, Robert
Stackowiak, Gary Dodge, David Klein, Ben Shapiro, and Christopher G. Chelliah
(Wiley Publishing, Inc.) and Oracle Built-In Packages, by Steven Feuerstein,
Charles Dye, and John Beresniewicz (O’Reilly).

DBMS_OUTPUT
This package sends text messages from stored procedures, packages, and
triggers to your PL/SQL environment.

The Oracle engine creates a text buffer (by default, it’s 20,000 characters, but
it can be modified up to 1,000,000) where your procedure could send any text
by using the following commands:

� DBMS_OUTPUT.PUT (text) places your text in the buffer.

� DBMS_OUTPUT.PUT_LINE (text) places your text in the buffer and ends
the line with the standard line separators.

Prior to Oracle RDBMS 10g Release 2, you couldn’t send more than 255 char-
acters at once by using either of these commands.

There are a number of ways to retrieve data from the buffer: either explicitly
via the command DBMS_OUTPUT.GET_LINE or automatically in some envi-
ronments. For example, in SQL*Plus, if you have SET SERVEROUTPUT ON,
Oracle checks the buffer after the end of the execution of a standalone DML
or an anonymous block.

UTL_FILE
The UTL_FILE package allows you to read and write files from the operating
system. Although there are many restrictions and limitations, it can still be a

83Chapter 3: Laying the Groundwork: PL/SQL Fundamentals

08_599577 ch03.qxp 5/1/06 12:11 PM Page 83

very useful tool. Before using this package, check other sources of documen-
tation for more complete information.

DBMS_UTILITY
DBMS_UTILITY is one of the oldest utility packages in the Oracle environ-
ment. It contains a number of very useful tools from retrieving the current
time accurate to 1⁄100 of a second to a full analysis of any PL/SQL name.

DBMS_JOB
The DBMS_JOB package allows you to schedule and manage any task to be
executed at a precise point in time. Oracle 10g includes the more flexible
DBMS_SCHEDULE. However, for older Oracle versions DBMS_JOB is an impor-
tant package to be familiar with, especially for administrators.

DBMS_JAVA
This package includes the whole set of Application Programming Interfaces
(APIs) that allow you to define the Java environment (privileges, compiler
options, debugging, and so on) from within the Oracle database.

DBMS_RANDOM
Although the DBMS_RANDOM package isn’t intended for cryptography, it is a
reasonable random-number generator for any other use.

84 Part II: Getting Started with PL/SQL

08_599577 ch03.qxp 5/1/06 12:11 PM Page 84

Chapter 4

Controlling Program Flow
In This Chapter
� Understanding control structures

� Setting up conditions

� Looping through commands

Every programming language has the ability to use logic to control what
statements execute next. PL/SQL is no different in this regard. PL/SQL

supports IF...THEN, CASE, and LOOP statements.

If you’re an experienced programmer, you can probably just skim this chap-
ter for the PL/SQL-specific syntax. You won’t be missing anything important.

If you have studied programming only in school or are a novice programmer,
you should probably read this chapter carefully to make sure that you under-
stand all these structures.

To solve a programming problem, you can write programs by using one of
two types of control structures:

� Conditional statements: In this case, the execution path is divided into
branches depending upon the condition. If the condition is true, one
path is followed; if false, a different path is used. These true or false con-
ditions are called Boolean (meaning they can only have two states, such
as on/off, yes/no, true/false) conditions.

� Loops (iterations): This execution path repeats a group of statements as
long as the condition is satisfied (that is, it returns a Boolean value of
TRUE).

Creating Condition Statements
Condition statements are among the most common statements used in PL/SQL.
This section discusses how to use conditions in IF and CASE statements.

09_599577 ch04.qxp 5/1/06 12:11 PM Page 85

IF...THEN statements
The most common logical element is the conditional execution of a statement
or group of statements. For example, to write a function that checks whether
the specified day is Sunday, you could use the code shown in Listing 4-1.

Listing 4-1: A Simple Condition Statement

create or replace function f_isSunday_tx (in_dt DATE)
return VARCHAR2
is

v_out_tx VARCHAR2(10);
begin

if to_char(in_dt,’d’)=1 then
v_out_tx:=’Y’;
DBMS_OUTPUT.put_line(‘IsSunday=Y’);

end if;
return v_out_tx;

end;

The syntax is very simple, namely:

if <condition> then
...<<set of statements>>...

end if;

The syntax is very simple, namely:

if <condition> then
...<<set of statements>>...

end if;

Within an IF...THEN statement (as in any logical block of PL/SQL code),
there must be at least one valid statement. The following code is invalid:

if salary < 1000 then
end if;

If you want to comment out everything within an IF...THEN statement, you
need to add a NULL (do nothing) statement. So, the following code is per-
fectly fine:

if salary < 1000 then
null;
/*
salary = 5000;
*/

end if;

86 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 86

The condition may be either a Boolean expression (as in the example) or
Boolean variable. Listing 4-2 accomplishes the same thing as Listing 4-1.

Listing 4-2: A Simple Condition Statement

create or replace function f_isSunday_tx (in_dt DATE)
return VARCHAR2
is

v_out_tx VARCHAR2(10);
v_flag_b BOOLEAN;

begin
v_flag_b := to_char(in_dt,’d’)=1;
if v_flag_b then

v_out_tx:=’Y’;
DBMS_OUTPUT.put_line(‘IsSunday=Y’);

end if;
return v_out_tx;

end;

You can execute as many statements as you want inside an IF...THEN state-
ment. There are no restrictions.

IF...ELSE statements
The code in Listing 4-2 returns ‘Y’ for all days that are Sundays; but for all
others it returns NULL. Because passing back NULL isn’t very useful, you can
change the code to return ‘Y’ if the date is Sunday and ‘N’ in all other
cases. This is the same as saying that if the condition is true, do one thing,
and otherwise do something else. PL/SQL has an ELSE construct to support
this type of condition shown in Listing 4-3.

Listing 4-3: Using ELSE in a Condition Statement

create or replace function f_isSunday_tx (in_dt DATE)
return VARCHAR2
is

v_out_tx VARCHAR2(10);
v_flag_b BOOLEAN;

begin
if to_char(in_dt,’d’)=1 then

v_out_tx:=’Y’;
else

v_out_tx:=’N’;
end if;
return v_out_tx;

end;

87Chapter 4: Controlling Program Flow

09_599577 ch04.qxp 5/1/06 12:11 PM Page 87

As specified:

IF <condition> then
...<<set of statements>>...

else
...<<set of statements>>...

end if;

Now you can take this principle one step farther. In the real world, few situa-
tions have conditions with only two outcomes. Assume that you need to create
a function that returns ‘HOLIDAY’ for all holidays, ‘SATURDAY’ or ‘SUNDAY’
for weekend days (unless they are holidays), and ‘WEEKDAY’ for all weekdays
(unless they are holidays). For this code, you’re still working with the same
value, namely the date that was passed into the function. But instead of two
outcomes, you now have a logical group of alternatives (representing the whole
selection process). That group consists of a number of branches (each repre-
senting one condition and corresponding code to be executed if the condition
is true). In this case, you can use the code shown in Listing 4-4.

Listing 4-4: Using an ELSIF Statement

create or replace function f_getDateType_tx (in_dt DATE)
return VARCHAR2
is

v_out_tx VARCHAR2(10);
begin

if to_char(in_dt,’MMDD’) in (‘0101’,’0704’) then
v_out_tx:=’HOLIDAY’;

elsif to_char(in_dt,’d’) = 1 then
v_out_tx:=’SUNDAY’;

elsif to_char(in_dt,’d’) = 7 then
v_out_tx:=’SATURDAY’;

else
v_out_tx:=’WEEKDAY’;

end if;
return v_out_tx;

end;

Listing 4-4 includes more advanced logic in comparison to the first examples:

if <condition> then
...<<set of statements>>...

elsif <condition> then
...<<set of statements>>...

elsif <condition> then
...<<set of statements>>...

else
...<<set of statements>>...

end if;

88 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 88

Oracle evaluates conditions starting at the beginning until it finds a valid one.
Although only one branch is executed, you can have as many ELSIF state-
ments as you want, as long as you include all the possible conditions in the
set. Your conditions don’t have to be exactly the same type, as in Listing 4-4
where two ELSIF statements are checking the day of the week, while the first
IF checks the date explicitly.

In the case of multiple conditions, the ELSE clause means “if all conditions
above are false.” That clause is optional, but it is a good idea to include it in
order to explicitly list the complete logical set of conditions.

Because Oracle doesn’t allow a branch without any statements inside, you
could rewrite Listing 4-1 by using a NULL command as follows:

create or replace function f_isSunday_tx (in_dt DATE)
return VARCHAR2
is

v_out_tx VARCHAR2(10);
begin

if to_char(in_dt,’d’)=1 then
v_out_tx:=’Y’;

else
null;

end if;
return v_out_tx;

end;

Writing the code this way explicitly indicates that if the day of the week is not
Sunday, nothing should be done. This doesn’t change the logic, but it makes
the code significantly more readable and maintainable.

CASE statements
Oracle 9i version R2 introduced another mechanism for handling conditional
choices, namely, CASE statements. Using the days of the week example, assume
that you need to return one of the following results: ‘SATURDAY’, ‘SUNDAY’,
or ‘WEEKDAY’. The IF/THEN/ELSE way to do this might be something like
Listing 4-5:

Listing 4-5: A Traditional Condition Statement

create or replace function f_getDateType_tx (in_dt DATE)
return VARCHAR2
is

v_out_tx VARCHAR2(10);

(continued)

89Chapter 4: Controlling Program Flow

09_599577 ch04.qxp 5/1/06 12:11 PM Page 89

Listing 4-5 (continued)
begin

if to_char(in_dt,’d’) = 1 then
v_out_tx:=’SUNDAY’;

elsif to_char(in_dt,’d’) = 7 then
v_out_tx:=’SATURDAY’;

else
v_out_tx:=’WEEKDAY’;

end if;
return v_out_tx;

end;

A CASE statement can replace code with multiple ELSIF statements, as
shown in Listing 4-6.

Listing 4-6: A Condition Using a CASE Statement

case <selector>
when <valueA> then

...<<set of statements>>...
when <valueB> then

...<<set of statements>>...
else

...<<set of statements>>...
end case;

Using this structure, the previous example could be rewritten as shown here:

create or replace function f_getDateType_tx (in_dt DATE)
return VARCHAR2
is

v_out_tx VARCHAR2(10);
begin

case to_char(in_dt,’d’)
when 1 then

v_out_tx:=’SUNDAY’;
when 7 then

v_out_tx:=’SATURDAY’;
else

v_out_tx:=’WEEKDAY’;
end case;
return v_out_tx;

end;

This code is exactly equivalent to Listing 4-1 (shown earlier), but it uses a
selector instead of a set of Boolean expressions. The selector (the driving
part of the CASE statement) is either a variable or function, the value of
which should be evaluated against values from branches. (As you see in the

90 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 90

example, branches are represented by using a single value, but not a condi-
tion.) The selector is executed only once, after which its value is compared to
all the values in the WHEN clauses, one after another, until it finds a match. If
any WHEN clause is executed, control passes to the next statement after the
logical group.

The ELSE clause in a CASE statement works like the ELSE clause in an IF
statement but with one critical difference. If you don’t use ELSE in an IF
statement, Oracle doesn’t do anything. But in a CASE statement, if no condi-
tion is satisfied and ELSE is missing, the execution fails. (For more informa-
tion about errors and exceptions, see Chapter 5.)

Oracle also introduced another kind of CASE statement (searched CASE) to
meet the requirements of ANSI standards. Instead of testing that a variable is
equal to some value, a searched CASE statement can test on any condition:

case
when <condition> then

...<<set of statements>>...
when <condition> then

...<<set of statements>>...
else

...<<set of statements>>...
end case;

It looks and works exactly like IF/THEN/ELSE, but the code is much easier
to read.

Comparing with NULL
To successfully work with conditions in PL/SQL, you need to know about
comparing with NULL. As we discuss earlier, a newly initialized variable is
always equal to NULL unless you assign a default value. (An empty string ‘’
is also interpreted as NULL.)

The NULL value is special. It is neither equal nor unequal to any non-NULL
value. It is even unequal to itself, as shown in Listing 4-7.

Listing 4-7: Comparisons Using NULL

SQL> declare
2 v_nr NUMBER; ➞2
3 begin
4 if v_nr = 1 then ➞4

(continued)

91Chapter 4: Controlling Program Flow

09_599577 ch04.qxp 5/1/06 12:11 PM Page 91

Listing 4-7 (continued)
5 DBMS_OUTPUT.put_line(‘*Equal to 1’);
6 elsif v_nr!= 1 then
7 DBMS_OUTPUT.put_line(‘*Not equal to 1’);
8 elsif v_nr = v_nr then
9 DBMS_OUTPUT.put_line(‘*Equal to itself’);
10 else
11 DBMS_OUTPUT.put_line(‘*Undefined result’);
12 end if; ➞12
13 v_nr:=v_nr+1; ➞13
14 DBMS_OUTPUT.put_line(‘New value: <’||v_nr||’>’);
15 end;
16 /
*Undefined result ➞17
New value: <> ➞18
PL/SQL procedure successfully completed.

Here’s the scoop on Listing 4-7:

➞2 An uninitialized variable always has a value of NULL.

➞4–12 Checks to see if variable v_nr is equal to 1, not equal to 1, or
equal to itself.

➞17 Surprisingly, only the ELSE branch was executed. This means that
none of these conditions returned TRUE.

➞18 Prints the result of the computation in line 13, which increased
the value of variable v_nr by 1. The output shows nothing.

There are a number of rules that clarify the previous results:

� All logical operations (including NOT) involving NULL always return NULL

� If, in a logical group of IF/THEN/ELSE or CASE statements, a condition of
some branch returns NULL, then statements belonging to that branch
are not executed. In that case, NULL is interpreted as FALSE.

� Most operations (built-in functions, arithmetic) with any NULL operand
return NULL with the following exceptions:

• Concatenations of strings ignore NULL.

• DECODE (which we discuss later) can compare values with NULL.

• The REPLACE function can take NULL as a third parameter.

If you expect that some variable, value, or function could have a NULL value,
you should check for NULL values by using the syntax:

variable|expression|function IS [NOT] NULL

This structure evaluates the value against NULL. (You can check equality by
using IS NULL or inequality by using IS NOT NULL.) That clause is the only

92 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 92

condition that always returns either TRUE or FALSE if NULL values are
involved. Now you can change Listing 4-7, as shown here:

SQL> declare
2 v1_nr NUMBER;
3 v2_nr NUMBER :=1;
4 begin
5 if v1_nr is null then
6 DBMS_OUTPUT.put_line(‘*V1 is NULL’);
7 elsif v1_nr is not null then
8 DBMS_OUTPUT.put_line(‘*V1 is not NULL’);
9 else
10 DBMS_OUTPUT.put_line(‘*Undefined result’);
11 end if;
12
13 if v2_nr is null then
14 DBMS_OUTPUT.put_line(‘*V2 is NULL’);
15 elsif v2_nr is not null then
16 DBMS_OUTPUT.put_line(‘*V2 is not NULL’);
17 else
18 DBMS_OUTPUT.put_line(‘*Undefined result’);
19 end if;
20 end;
21 /
*V1 is NULL
*V2 is not NULL
PL/SQL procedure successfully completed.

Oracle correctly detected that v1_nr is NULL and v2_nr is not NULL. There
are no more unpredictable results.

The syntax IS NULL works fine for comparisons, but you might not always
have the option of checking each variable and assigning appropriate values.
To make programmers’ lives easier, Oracle provides a very useful function,
NVL, as shown here:

variable:=nvl(value1,value2);

The idea is very simple. If the first value is not NULL, then return it; otherwise
return the second value. You can use expressions, variables, functions, and
literals in NVL, as long as both variables are of the same datatype, as shown
in Listing 4-8.

Listing 4-8: Using NVL

SQL> declare
2 v_nr NUMBER;
3 begin
4 v_nr:=nvl(v_nr,0)+1; ➞4
5 DBMS_OUTPUT.put_line(‘New value: <’||v_nr||’>’);

(continued)

93Chapter 4: Controlling Program Flow

09_599577 ch04.qxp 5/1/06 12:11 PM Page 93

Listing 4-8 (continued)
6 end;
7 /

New value: <1>
PL/SQL procedure successfully completed.

➞4 The NVL function checks to see whether the value of v_nr is NULL,
and because it is NULL, returns 0 (the second value). Because NULL
is no longer involved in the addition operation, a result is returned.

One more thing to remember about NULL is that when creating selector CASE
statements, you cannot have NULL in the list of possible values. For example,
although the following code is correct from the syntax point of view, it
doesn’t work:

create or replace function f_getDateType_tx (in_dt DATE)
return VARCHAR2
is

v_out_tx VARCHAR2(10);
begin

case TO_CHAR(in_dt,’d’)
when null then
-- value will be null if in_dt is null

v_out_tx:=’<NULL>’;
when 1 then

v_out_tx:=’SUNDAY’;
when 7 then

v_out_tx:=’SATURDAY’;
else

v_out_tx:=’WEEKDAY’;
end case;
return v_out_tx;

end;

The reason that this code fails is that the selector works by comparing one
value to another. However, in PL/SQL the Boolean expression NULL=NULL
evaluates to FALSE. You need to wrap the selector in an NVL expression to
be sure that it could never be NULL, as shown next:

create or replace function f_getDateType_tx (in_dt DATE)
return VARCHAR2
is

v_out_tx VARCHAR2(10);
begin

case nvl(to_char(in_dt,’d’) , 0)
when 0 then
-- value will be null if in_dt is null

v_out_tx:=’<NULL>’;
when 1 then

v_out_tx:=’SUNDAY’;
when 7 then

94 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 94

v_out_tx:=’SATURDAY’;
else

v_out_tx:=’WEEKDAY’;
end case;
return v_out_tx;

end;

Handling conditions
You need to keep a few details in mind when working with conditions in PL/SQL.

In Oracle (as in most other programming languages), conditions can be con-
nected by using logical operations (AND, OR, and NOT). In these cases, the
default order of evaluation is standard. First any parentheses are resolved,
and then operators are executed on the same level in order of precedence:
NOT (highest precedence), AND, and OR (lowest precedence), as shown here:

SQL> declare
2 v_day_nr NUMBER :=
3 TO_CHAR(TO_DATE(‘20060101’,’YYYYMMDD’),’D’);
4 begin
5 if v_day_nr in (1,7)
6 or (v_day_nr not in (1,7)
7 and (v_day_nr between 0 and 6
8 or v_day_nr between 19 and 23
9)
10)
11 then
12 DBMS_OUTPUT.put_line(v_day_nr||’: Off-peak’);
13 else
14 DBMS_OUTPUT.put_line(v_day_nr||’: Peak’);
15 end if;
16 end;
17 /
1: Off-peak
PL/SQL procedure successfully completed.

In this example, you have four different conditions connected into one com-
plex condition to be evaluated. January 1, 2006, was indeed a Sunday, and the
condition returned Off-peak exactly as expected.

But not everything is that simple, Oracle uses a very interesting mechanism
called short-circuit evaluation to work with conditional structures. PL/SQL
stops evaluating the expression as soon as the result can be determined. If
you have several conditions connected with OR and you already know that
one of them is TRUE, why do you need to check any others? To validate this
concept, the previous example has been changed, as shown here:

95Chapter 4: Controlling Program Flow

09_599577 ch04.qxp 5/1/06 12:11 PM Page 95

SQL> declare
2 v_day_nr NUMBER :=
3 TO_CHAR(TO_DATE(‘20060101’,’YYYYMMDD’),’D’);
4
5 function f_DayNr return NUMBER is
6 begin
7 DBMS_OUTPUT.put_line(‘Called function’);
8 return v_day_nr;
9 end;
10 begin
11 if f_DayNr in (1,7)
12 or (f_DayNr not in (1,7)
13 and (f_DayNr between 0 and 6
14 or f_DayNr between 19 and 23
15)
16)
17 then
18 DBMS_OUTPUT.put_line(v_day_nr ||

‘: Off-peak’);
19 else
20 DBMS_OUTPUT.put_line(v_day_nr || ‘: Peak’);
21 end if;
22 end;
23 /
Called function
1: Off-peak
PL/SQL procedure successfully completed.

Even though the function f_dayNr appears four times, it is executed only
once. The very first condition is TRUE, so Oracle doesn’t fire anything else.
This feature can be critical for tuning because by simply using the appropri-
ate ordering of conditions, you can avoid executing unnecessary code.

Oracle also has one function, called DECODE, that’s available only in SQL, where
you can also achieve the benefits of short-circuit evaluation, as shown here:

select DECODE(expression,
Value1, result1,
Value2, result2
...
[ResultElse]) from dual

In this case, you’re specifying the expression and evaluating it against a
number of values. If it is equal, it returns the result associated with the value.
Also, you could set the result to be returned if all other conditions failed.

Many programmers are unaware of this functionality in PL/SQL, so they
invent their own DECODE functions like this:

96 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 96

create or replace function f_decode
(in_value VARCHAR2,
in_compare VARCHAR2,
in_success_value VARCHAR2,
in_fail_value VARCHAR2) return VARCHAR2

is
begin
if in_value=in_compare then
return in_success_value;

else
return in_fail_value;

end if;
end;

Although this code will functionally behave the same way as using DECODE,
hand-written decode short-circuit evaluations don’t work. As a result, if you
call that function, all expressions to calculate values and results will be fired
at the very beginning (before passing values into the function).

Looping the Loop
A very common logical structure in PL/SQL code is loops, which allow for
repeated execution of a set of commands. There are three types of iterations:

� Simple loops include a starting loop, execute a set of commands, and
then check the condition. If the condition is satisfied, the loop is exited
and the program returns to the beginning of the loop. You can nest
simple loops, so that several loops occur within a loop.

� WHILE loops check the condition and execute a set of commands. This
process is repeated until the loop is exited.

� FOR loops have a fixed and predefined number of iterations to execute a
set of commands N times.

This section will discuss each of these loop types with some examples.

Simple loops
The syntax of a typical simple loop looks like the following:

loop
...<<set of statements>>...
exit when <<conditionA>>;
...<<set of statements>>...

end loop;

97Chapter 4: Controlling Program Flow

09_599577 ch04.qxp 5/1/06 12:11 PM Page 97

or

loop
...<<set of statements>>...
if <<conditionB>> then

...<<set of statements>>...
exit;

end if;
...<<set of statements>>...

end loop;

The set of commands enclosed in the LOOP/END LOOP is repeated until the
EXIT command is fired. The preceding example shows both ways for exiting
a loop: EXIT WHEN and EXIT.

When you use the EXIT command, as soon as Oracle encounters it, the loop
is immediately terminated. Therefore, you will usually place the EXIT com-
mand inside an IF...THEN statement, which we introduce earlier in this
chapter. As a result, when the condition in the IF statement is true, the EXIT
command will be fired. It is recommended that you use the EXIT command
when you want to execute some other code within the IF...THEN statement
just before the loop ends.

The EXIT WHEN statement is a bit more elegant. You place the condition
right alongside the EXIT command. You use EXIT WHEN if the only thing you
want to do when the condition is true is to exit the loop.

Always check your code for valid exits from the loop; otherwise, you might
very easily create an endless loop.

Using the previous example of days of the week, if you want to show all the
Saturdays in January, the logical steps would be

1. Find the first Saturday in January.

2. Print the date.

3. Add 7 to the detected date.

4. If the new date is not in January, exit; otherwise, repeat Steps 2 and 3.

Programmatically, this would look like the following:

declare
v_start_dt date:=to_date(‘01-01-2006’,’MM-DD-YYYY’);
v_end_dt date:=to_date(‘02-01-2006’,’MON-DD-YYYY’);

begin
v_start_dt:=v_start_dt+

(7-to_number(TO_CHAR(v_start_dt,’d’)));

98 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 98

-- detect first Saturday
loop

DBMS_OUTPUT.put_line
(to_char(v_start_dt,’MM-DD-YYYY’));

v_start_dt:=v_start_dt+7;
exit when v_start_dt >=v_end_dt;

end loop;
end;

Nested loops
You can also create multiple loops nested within each other. These are called
nested loops. Nested loops occur frequently when you’re dealing with hierar-
chical data. Some examples of how to loop through records in the database
are included in Chapter 6. Assume that you want to print out the following
list of numbers (each on its own line):

0 0 0 0 5 5 5 5 10 10 10 10 15 15 15 15 20 20 20 20 25 25 25 25

In this case, you want to step from 0 to 25 by fives and print each number
four times. Specifying the task this way, you will need two loops (see Listing
4-9) one inside of another. This example illustrates a few different kinds of
loops (with both EXIT and EXIT WHEN).

Listing 4-9: Loop inside of a Loop

declare
v_ind_nr NUMBER;
v_current_nr NUMBER;

begin
v_current_nr:=0; -- should not be null!
loop ➞6

v_ind_nr:=0; -- reset each time
loop ➞8

v_ind_nr:=v_ind_nr+1;
DBMS_OUTPUT.put_line(v_current_nr);
exit when v_ind_nr=4;

end loop; ➞12
v_current_nr:=v_current_nr+5;
exit when v_current_nr=25;

end loop; ➞15
end;

➞8–12 The exit from the internal loop does not break the external one
(lines 6–15).

99Chapter 4: Controlling Program Flow

09_599577 ch04.qxp 5/1/06 12:11 PM Page 99

There is a way to exit an outer loop from an EXIT statement in an inner loop.
To do this, you must name the loop by using a label. You indicate labels by
enclosing them in << and >> as in <<myLabel>>. For this example, assume
that you have a parameter to indicate how many records should be printed
and to stop when a certain number is reached. You could use Listing 4-10 to
accomplish this.

Listing 4-10: Exiting from Nested Loops

declare
v_ind_nr NUMBER;
v_current_nr NUMBER;
v_max_printed_nr NUMBER :=10;
v_printed_nr NUMBER:=0;

begin
v_current_nr:=0; -- should not be null!
<<Main>>
loop

v_ind_nr:=0; -- reset each time
<<Inner>>
loop

v_ind_nr:=v_ind_nr+1;
DBMS_OUTPUT.put_line(v_current_nr);
v_printed_nr:=v_printed_nr+1;
exit Main when v_printed_nr = v_max_printed_nr;
exit when v_ind_nr=4;

end loop Inner;
v_current_nr:=v_current_nr+5;
exit when v_current_nr=25;

end loop Main;
end;

Both loops are marked with the labels <<Main>> and <<Inner>>. These
lines must immediately precede their respective loops. Using this strategy,
you can explicitly reference the external loop via its label to indicate which
loop to exit from because of the condition. You need to place the labels only
where appropriate, and the rest of the commands will work normally.

WHILE loop
If you can write your loop with EXIT WHEN as the first statement after the
LOOP command, you can use a WHILE loop. A WHILE loop is exactly equiva-
lent to a regular loop with an EXIT WHEN as the first statement. There is
absolutely no difference. Keep in mind that the condition is checked before
the code in the loop is executed. So, if the condition is false, the code in the

100 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 100

loop will never be executed. You use a WHILE loop because the syntax makes
your code a little easier to read than with a normal loop. The syntax is shown
in Listing 4-11.

Listing 4-11: WHILE Loop

while <<condition>>
loop

...<<set of statements>>...
end loop;

For example, Listing 4-11 could be rewritten as shown in Listing 4-12.

Listing 4-12: Nested WHILE Loop

declare
v_ind_nr NUMBER;
v_current_nr NUMBER;

begin
v_current_nr:=0; -- should not be null!
while v_current_nr<=25
loop

v_ind_nr:=0; -- reset each time
while v_ind_nr<4
loop

v_ind_nr:=v_ind_nr+1;
DBMS_OUTPUT.put_line(v_current_nr);

end loop;
v_current_nr:=v_current_nr+5;

end loop;
end;

If you compare Listings 4-9 and 4-12, most people would agree that Listing
4-12 is a little easier to read. You should also notice that the conditions to ter-
minate the loops are a bit different. In Listing 4-9, the loops terminated at the
end of the LOOP...END statement. In Listing 4-12, you had to change the
equalities (=4, =25) to inequalities (<4, <=25).

Getting the loop ending condition just right so that it doesn’t execute one
time too many or too few can be tricky. You need to very carefully think
through what will happen with your code.

It is possible to add an emergency EXIT inside the loop. If an EXIT statement
is encountered inside a WHILE loop, the loop will terminate independent of
the WHILE condition.

101Chapter 4: Controlling Program Flow

09_599577 ch04.qxp 5/1/06 12:11 PM Page 101

Be very careful about using an EXIT statement inside a WHILE loop. By using
a WHILE loop, the loop will only terminate when the WHILE condition is false.
If you also allow the loop to terminate with a conditionally executed EXIT
statement, it can make your code very hard to modify and debug.

FOR loop
In many cases, you will know exactly how many times to repeat a set of com-
mands. Oracle handles these situations by using a FOR loop. The syntax for a
FOR loop is as follows:

for <counter> in <lower_bound>..<higher_bound>
loop

...<<set of statements>>...
end loop;

This code will execute these steps:

1. In the background Oracle defines the counter as a PLS_INTEGER and
assigns it the lower bound.

2. If the counter does not exceed the higher bound, a set of statements is
executed.

3. The counter is incremented by 1 (the default step of the regular loop).

4. If the counter does not exceed the higher bound, the set of statements is
executed.

In Listing 4-11 (shown earlier), the inner loop is always executed four times.
This example is also appropriate to demonstrate a FOR loop:

declare
v_current_nr NUMBER;

begin
v_current_nr:=0; -- should not be null!
loop

for inner_c in 1..4
loop

DBMS_OUTPUT.put_line(v_current_nr);
end loop;
v_current_nr:=v_current_nr+5;
exit when v_current_nr>25;

end loop;
end;

102 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 102

The main loop is a bit difficult to replace with a FOR loop, because you would
need to go from 0 to 25 with a step increment of 5. But in PL/SQL, there is no
way to increment the loop counter by anything other than 1. (You can also
decrement the loop counter by one each time. Many languages allow you to
specify the step increment in a loop. But you can still use a FOR loop with our
example. You just have to manipulate the loop counter (and assign it to a new
variable) inside the loop as shown here:

declare
v_main_nr NUMBER;

begin
for main_c in 0..5
loop

v_main_nr := main_c * 5; ➞6

for inner_c in 1..4
loop

DBMS_OUTPUT.put_line(v_main_nr);
end loop;

end loop;
end;

➞6 Adjusts main_c so it will have the correct values.

The counter variables’ visibility is what you would expect. The counter from
the main loop is visible in the internal loop, but the counter from the internal
loop isn’t visible in the external loop.

There is no way to modify the loop counter. It is read-only. If you need to add
some conditional logic and move the counter one way or another, you won’t
be able to use a FOR loop.

There is one other option with a FOR loop. You can reverse directions and go
from the upper bound to the lower one, as shown here:

SQL> begin
2 for main_c in reverse 1..3
3 loop
4 DBMS_OUTPUT.put_line(main_c);
5 end loop;
6 end;
7 /

3
2
1
PL/SQL procedure successfully completed.
SQL>

103Chapter 4: Controlling Program Flow

09_599577 ch04.qxp 5/1/06 12:11 PM Page 103

The upper or lower bounds of the FOR loop can be defined as variables or
functions. The following code will first round off the values into integers at
runtime:

SQL> declare
2 V_lower_nr NUMBER:=2/3;
3 begin
4 for main_c in reverse v_lower_nr..10/3
5 loop
6 DBMS_OUTPUT.put_line(main_c);
7 end loop;
8 end;
9 /

3
2
1
PL/SQL procedure successfully completed.

In this case, the cursor was executed successfully three times because 2⁄3
was rounded to 1 and 10⁄3 was rounded to 3. Therefore the last example works
exactly the same way as the previous one, but the second one used both a
variable and calculated value that were converted to PLS_INTEGER.

It is also possible to use EXIT in the FOR loop. However, not only is it poor
programming practice, it will also make your code run slower. Oracle’s com-
piler runs FOR loops very quickly. When you have an EXIT statement in your
FOR loop, the compiler creates a routine that runs slower.

104 Part II: Getting Started with PL/SQL

09_599577 ch04.qxp 5/1/06 12:11 PM Page 104

Chapter 5

Handling Exceptions
In This Chapter
� Exploring exception basics

� Discovering types of exceptions

� Understanding how exceptions propagate

Almost any program has uncommon situations that need to be handled.
These situations are sometimes caused by data entry problems. Imagine

that a user enters several pieces of information into an online-book-order appli-
cation. Maybe one or more pieces of information are missing or incorrectly
entered. For example, in the case where the person forgot to indicate the ship-
ping method on their order, the application responds with a user-friendly error
message, such as You must enter a shipping method for your
order. This is an example of user-defined exception handling in action.

You also want to have a nice way to handle programming errors and excep-
tions so that users don’t see incomprehensible messages such as Unhandled
Program Exception — ORA 600. If you have ever encountered a message
such as An unexpected program error has occurred. Please
contact the help desk and report this problem, you have experi-
ence with a program where the designers tried to come up with a general way
to handle unexpected situations.

In PL/SQL, you can handle these problems by using a special construct called
an exception. The command RAISE is used to indicate that an exception has
occurred, as in “the program raised an exception.” Many exceptions are auto-
matically raised by PL/SQL when improper situations occur. For example, an
exception is raised if you try to divide a number by zero.

In addition to the automatic exceptions, you can define your own exceptions
to handle any unusual or improper situations. For example, having a start date
of a project that takes place after the end date makes no sense. If this situation
arises, you can raise your own exceptions by using the RAISE command.

When an exception is raised in a PL/SQL program, it means that something
unusual has occurred and the normal processing of the program unit should
stop. This chapter explains how to define and work with exceptions in PL/SQL.

10_599577 ch05.qxp 5/1/06 12:12 PM Page 105

Understanding Exception Basics
PL/SQL has a specific set of commands to support exceptions. First, it is
important to understand the different parts of the exception.

1. Declare the exception.

By declaring the exception, you’re creating a new type of exception. Many
Oracle predefined exceptions also exist (for example, ZERO_DIVIDE), and
you don’t need to explicitly declare them.

2. Raise an exception.

After the exception is declared, it can be raised within the program. For
user-defined exceptions, you raise the exception in response to something
that happens in your program (for example, if the application detects that
no shipping method was specified on a book order). For predefined excep-
tions, the exceptions are automatically raised when the problem occurs.
For example, if you try to divide by zero, the ZERO_DIVIDE exception is
automatically raised.

3. Handle the exception.

After an exception has occurred, the program stops normal execution
and control is transferred to a special part of the program unit called the
exception handler.

In addition to the parts of an exception, you also need to understand that an
exception has four attributes:

� Name provides a short description of the problem.

� Type identifies the area of the error. (It could be PL/SQL language,
Oracle kernel, and so on.)

� Exception Code gives a numeric representation of the exception.

� Error message provides additional information about the exception.

For example, the predefined divide-by-zero exception has the following
values for the attributes:

� Name = ZERO_DIVIDE

� Type = ORA (from the Oracle engine)

� Exception Code = –01476

� Error message = divisor is equal to zero

We cover these parts and attributes in more detail later in this chapter.

106 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 106

Adding Exception Handlers to Your Code
As an example of an exception handler, assume that you’re using a program
that divides distance by time to get speed. If someone enters 0 for time, divid-
ing distance by time raises the ZERO_DIVIDE exception.

First look at the program without an exception handler (see Listing 5-1) to
see how the program behaves.

Listing 5-1: Code with No Exception Handler

SQL> create or replace function f_get_speed_nr
2 (i_distance_nr NUMBER, i_timeSec_nr NUMBER)
3 return NUMBER
4 is
5 v_out_nr NUMBER;
6 begin
7 v_out_nr:= i_distance_nr/i_timeSec_nr; ➞7
8 return v_out_nr;
9 end;
10 /
Function created.
SQL> declare
2 v_speed_nr NUMBER;
3 begin
4 v_speed_nr:=f_get_speed_nr(10,0); ➞15
5 end;
6 /

declare ➞18
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at “SCOTT.F_GET_SPEED_NR”, line 7
ORA-06512: at line 4

Here are the details on Listing 5-1:

➞7 This statement raises the ZERO_DIVIDE exception if i_timeSec_
nr = 0 and i_distance_nr is not null.

➞15 This statement calls the function f_get_speed_nr with 0 as the
second parameter.

➞18 The program works fine as long as no one enters 0 for Time.
When that happens, Oracle complains about an “unhandled
exception.” Exception information starts as a result of division by
zero in the code. It includes the exception code, error message,
and the location of the error.

107Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 107

Unhandled exceptions should never happen in a program. They generally
indicate that, as a programmer, you really haven’t thought through all the
things that could happen in your program. This problem can be solved by
using conditional logic like that shown in Listing 5-2.

Listing 5-2: Code with Conditional Control to Avoid an Exception

create or replace function f_get_speed_nr
(i_distance_nr NUMBER, i_timeSec_nr NUMBER)
return NUMBER
is
v_out_nr number:=0;

begin
if i_timeSec_nr!=0 then ➞7
v_out_nr:= i_distance_nr/ i_timeSec_nr;

end if;
return v_out_nr;

end;

➞7 This line tells the program not to perform the speed calculation if
it would mean dividing by zero.

This code will avoid the unhandled exception. However, from looking at the
code, it isn’t clear that you’re trying to avoid a ZERO_DIVIDE exception. Of
course, if your code were well commented, a comment might explain what
you are doing. However, the code can be even clearer if the exception logic is
handled in the block’s own exception handler. As shown in Listing 5-3, when
the exception is raised, that information is entered into the LogError table.

Listing 5-3: Code with Explicit Handler for Predefined Exception

SQL> create table t_logError(➞1
2 error_tx VARCHAR2(4000),
3 date_dt date default sysdate,
4 loggedby_tx VARCHAR2(32) default user)
5 /

Table created.
SQL> create or replace function f_get_speed_nr
2 (i_Distance_nr NUMBER, i_timeSec_nr NUMBER)
3 return NUMBER
4 is
5 v_out_nr NUMBER;
6 begin
7 v_out_nr:= i_distance_nr/i_timeSec_nr; ➞13
8 return v_out_nr; ➞14
9 exception ➞15
10 WHEN ZERO_DIVIDE THEN ➞16
11 insert into t_logError (error_t) ➞17
12 values (‘Divide by zero in the

F_GET_SPEED_NR’);

108 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 108

13 return null; ➞19
14 end;
15 /
Function created.
SQL>

Here is some additional information about Listing 5-3:

➞1 You need a special table to store your logging information.

➞13 If a zero time and a distance that isn’t null are encountered, this
line will throw an exception.

➞14 If an exception is raised in line 7, this line won’t execute.

➞15 Exception indicates the start of the exception handler.

➞16 For each exception to be handled, use a line like this. The when
zero_divide then line means that when a ZERO_DIVIDE
exception is raised, the program should execute the code follow-
ing it until the next WHEN clause or the END of the block, which in
this case is in lines 11–13.

➞17 When a ZERO_DIVIDE exception is raised, put an entry into the
t_logError table.

➞19 The function returns a value of NULL. Remember that a function
must always return a value (or Oracle will raise its own exception).

Table 5-1 compares a few different execution scenarios based on the time and
distance example in Listing 5-3 to show how different scenarios are handled.

Table 5-1 Comparing Output Scenarios for Listing 5-3
Scenario What Happens Result

Case A: The divisor is not 0 and nothing The function returns 5.
distance = 10, unpredictable happened. The
time = 2 function will return the expected

result.

Case B: Case B attempts to divide by 0. The function’s exception han
distance = 10, The database raised an excep- dler detects the ZERO_
time = 0 tion, but successfully inter- DIVIDE exception, logs the

cepted it in the exception handler, error, and returns NULL to the
because that exception was calling routine.
specifically expected. As a result,
the program logged a failure by
inserting a record into the log.

(continued)

109Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 109

Table 5-1 (continued)
Scenario What Happens Result

Case C: Even though the exception was An additional exception is
distance = 10, handled, the insert failed, because raised because of the insert
time = 0, but of inadequate hard drive space. failure and the function termi-
there was not nates without returning any
enough space value. Because you did not
on the hard handle that new exception, it
drive to log will be raised to the calling
the exception program.

Understanding Different Exception Types
Earlier in this chapter, we mention that exceptions are identified by type,
code, name, and error message. This section explains those types in more
detail so you can quickly identify the kind of exception being raised.

Exception types can be identified by the error code prefixes, as outlined in
Table 5-2.

Table 5-2 Identifying Exception Types
Error Code Prefix Indicates This Exception Type of Error

ORA Core RDBMS errors

PLS PL/SQL errors

FRM Oracle Forms errors (If you’re using an Oracle prod-
uct, the product might use its own exception type.)

REP Oracle Reports errors

You will rarely see exception types other than ORA. Situations governing
other types of exceptions are beyond the scope of this book.

Exception codes are negative and are always displayed with five digits. The
code, in conjunction with the exception type, uniquely defines the exception.
The Oracle function SQLCODE returns the type and code of the most recently
raised exception. For example, SQLCODE returns ORA-01476 when the ZERO_
DIVIDE exception is raised.

110 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 110

Exception names are usually associated with exceptions that you create your-
self. Only a small number of predefined exceptions (about 20) are named. If
the exception is named, you can use its name in the exception handler. For
example in Listing 5-3, line 16 referred to the divide-by-zero exception by
including WHEN ZERO_DIVIDE THEN in the code. We discuss how to handle
unnamed predefined exceptions in the next section.

The exception message is a text string that describes the exception in more-
or-less user-friendly terms. Many Oracle exceptions (and most of the ones
you’re likely to encounter) have some exception message associated with
them. The function SQLERRM returns the text of the error message for the
most recently raised exception.

The easiest way to get more information about an Oracle exception is to
search for it on the Web. For example if you google ORA-01476, you’ll find
dozens of sites that describe the divide-by-zero error, how to fix it, odd things
that might have caused it, and more information than you ever wanted to
know about it.

Predefined Exceptions in PL/SQL Code
Oracle includes a large set of predefined exceptions. A few of the most
common predefined exceptions are named (like ZERO_DIVIDE).

All named exceptions have codes, but in the exception-handling block, you
will usually refer to them by using their more user-friendly names. Different
versions of the Oracle RDBMS might include different sets of these named
exceptions. A few of the most important ones are mentioned here:

� INVALID_NUMBER (ORA-01722): Conversion of string to number failed.

� VALUE_ERROR (ORA-06502): Generic error indicating that there is an
inconsistency between the variable and its value (for example, you are
trying to assign a string with 15 characters into a variable with a maxi-
mum length of 10).

� DUP_VAL_ON_INDEX (ORA-00001): The program is attempting to
store duplicate values in a database column that is constrained by a
unique index.

Only some predefined exceptions have names. Even if the exception is
unnamed, you still need to be able to handle the exception when it is raised.
For this purpose, you will use the SQLCODE function we discuss in Listing 5-4.

111Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 111

One situation where you need to refer to an unnamed exception is to detect
deadlocks. Deadlocks occur when two sessions are both waiting for the other
to complete. It is possible for any DML statement that changes data to cause
a deadlock. (For further discussion of deadlocks, see Chapter 12.) Oracle is
able to detect deadlocks and, when it does, it raises the associated exception.
In this example, the exception is simply logged if a deadlock is detected. Any
other unanticipated errors are logged and re-raised, as shown in Listing 5-4.

Listing 5-4: Handling an Unnamed Exception

procedure p_updateLoc
(i_deptno_nr NUMBER, i_new_loc_tx VARCHAR2)

is
v_error_nr NUMBER;
v_error_tx VARCHAR2(4000);

begin
update dept ➞7
set loc=i_new_loc_tx
where deptno=i_deptno_nr;

exception
when others then ➞11

v_error_nr :=sqlcode; ➞12
v_error_tx := sqlerrm; ➞13
insert into t_LogError(error_tx) ➞14
values(i_deptno_nr||’-’||

v_error_nr||’:’|| v_error_tx);
if sqlcode=-60 then-- deadlock error is ORA-00060 ➞17

null;
else

raise; ➞20
end if;

end;

The following are additional explanations for Listing 5-4:

➞7 The UPDATE statement might cause a deadlock. If it occurs, the
deadlock exception is raised.

➞11 You cannot directly handle an unnamed exception, so instead
use WHEN OTHERS to handle the error.

➞12–14 You cannot use SQLCODE and SQLERROR inside an SQL state-
ment. First return the functions into temporary variables that
pass the information to the UPDATE statement.

➞17 if sqlcode=-60 detects the deadlock.

➞20 For all errors other than deadlock, it is a good idea to re-raise the
error so it isn’t hidden.

112 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 112

The WHEN OTHERS THEN NULL and WHEN OTHERS THEN RETURN NULL
commands can handle many situations, but be very careful when using them
because they might mask a serious problem. There might be cases when you
need to debug multi-level “spaghetti code” where other real activity is hidden
under these generic exception handlers. It’s tempting to use WHEN OTHERS
NULL when you’re first developing your code, but be sure to go back and
write code to actually handle the exception. Most experienced PL/SQL devel-
opers consider use of WHEN OTHERS THEN NULL as a very poor program-
ming practice.

Oracle lets you assign a name to a predefined exception by using a PRAGMA
command (see Chapter 12 for a discussion of PRAGMAs). An exception handler
that checks for the e_deadlock_detected exception is easier to understand
and maintain than code that is checking for SQLCODE 60. A sample is shown
in Listing 5-5.

Listing 5-5: Assigning a Name to Predefined Exception Code

procedure p_updateLoc
(i_deptno_nr NUMBER, i_new_loc_tx VARCHAR2)
is
v_error_nr NUMBER;
e_deadlock_detected exception; ➞5
pragma exception_init(e_deadlock_detected,-60); ➞6

begin
update dept
set loc=i_new_loc_tx
where deptno=i_deptno_nr;

exception
when e_deadlock_detected then ➞12
v_error_nr:=sqlcode;
insert into t_LogError (error_tx)

values(i_deptno_nr||’:’||v_error_nr); ➞15
raise; ➞16

end;

Here’s a little more detail about some of the lines in the preceding code block:

➞5–6 This line created a custom exception e_deadlock_detected
and associated it with existing exception code -60.

➞12 The exception is handled, using its name.

➞15 When the exception is logged, the number -60 is passed.

➞16 Re-raise the same exception, because you need only to log the
event without preventing the exception to be raised.

113Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 113

Adding User-Defined Exceptions
In addition to predefined exceptions, which were discussed in the preceding
section, you can add user-defined exceptions. The exception usually corre-
sponds to the breaking of some rule and works as a red flag to notify you
about the infraction. With user-defined exceptions, you can use PL/SQL to
clearly identify exception conditions in your business logic.

Before raising a user-defined exception, you must first declare the exception
in the declaration section of the program. The syntax is

<exception_name> exception;

When you raise the exception, you do it by using the RAISE command. The
syntax is:

raise <exception_name>;

Handle your exception just as if it were a named predefined exception. The
syntax is:

when <exception_name> then

For example, a business might have a rule that “A salary increase may not
exceed 300 percent.” If someone tries to implement an increase larger than
300 percent, the whole application module should be halted for a security
investigation. Of course, you could use IF...THEN logic to support this
requirement, but the code is clearer when using an exception handler, as
shown in Listing 5-6.

Listing 5-6: A User-Defined Exception

function f_ValidateSalary
(i_empNo_nr NUMBER, i_new_Sal_nr NUMBER)
return VARCHAR2
is
v_current_Sal_nr NUMBER;
e_increaseTooLarge exception; ➞6

begin
select sal into v_current_Sal_nr
from emp
where empNo=i_empNo_nr;
if (i_newSal_nr/v_current_Sal_nr)*100>300
then
raise e_increaseTooLarge; ➞13

end if;

--- maybe lots of other tests here

114 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 114

return ‘Y’; ➞18
exception
when e_increaseTooLarge then ➞20
insert into t_LogError ...
return ‘N’; ➞22

end;

The following list explains some of the lines in Listing 5-6:

➞5 The exception declaration.

➞13 The salary is too large, so the exception is raised. If the exception
is raised, the program jumps to the exception handler.

➞18 If no exceptions are raised, the function returns ‘Y’ (salary modi-
fication is valid).

➞20 Detects the e_increaseTooLarge exception after the exception
has been raised.

➞22 Because an exception was raised, the function returns ‘N’ (salary
modification is invalid).

Assigning a code to a user-defined
exception
User-defined exceptions don’t have associated codes. (See “Understanding
Different Exception Types” earlier in this chapter for an introduction to
codes.) Therefore SQLCODE will return NULL if a user-defined exception is
raised. However, there is a way to associate user-defined exceptions with a
specific code number, using a pragma exception_init statement.

For consistency, and to keep your exceptions organized, it is helpful to assign
a code to each user-defined exception. You can insert this code into your log
table, as shown in Listing 5-7.

Listing 5-7: Code Assigned to a User-Defined Exception

procedure p_validateSalary
(i_empNo_nr NUMBER, i_new_sal_nr NUMBER)

is
v_current_sal NUMBER;
v_error_nr NUMBER;

e_increaseTooLarge exception;
pragma exception_init(e_increaseTooLarge,-20999); ➞6

begin
...

(continued)

115Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 115

Listing 5-7 (continued)
exception
when increase_too_much then

v_error_nr := sqlcode;
insert into t_LogError (error_tx)

values(i_empNo_nr||’:’||v_error_nr);
raise;

end;

➞6 This line associates the previously defined exception with a
number: -20999.

The EXCEPTION_INIT statement is placed in the declaration section of the
block. It is a good practice to always place the EXCEPTION_INIT right next
to the exception declaration.

Also, when assigning a code to a user-defined exception, choose a code
between –20999 and –20000 only. Codes in this range distinguish user-defined
exceptions from predefined exceptions. Oracle has promised that it will never
use the numbers between –20999 and –20000 for any Oracle exceptions, so
you can safely use them for your applications. Although you could conceiv-
ably use any other number, we don’t recommend doing so, just in case Oracle
decides to use that number in the future.

You can still run into trouble by using these numbers for your exceptions if
you’re writing an extension to packaged software. The packaged software
vendor might have already used some of those exceptions. You have to be
very careful if you’re using packaged software to avoid using the same num-
bers that the software uses.

If a user-defined exception is raised and not handled, Oracle will return the
error code you have assigned. If no code number was assigned to the user-
defined exception and that exception was not handled, Oracle uses the
exception ORA-06510 (PL/SQL: unhandled user-defined exception) to notify
the program about the error.

Including error messages in
user-defined exceptions
As mentioned earlier in this chapter, Oracle usually not only provides an
error code or name, but also an explanation of what happened. That explana-
tion is called an error message.

In your user-defined exceptions, you can specify error messages. The only
limitation is that you can only specify error messages for exceptions that

116 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 116

have already been assigned a code. Using the example of not allowing any
salary increase of over 300 percent, you want to add a user-friendly error
message to the user-defined exception, as shown in Listing 5-8.

Listing 5-8: Assigning an Error Message for a User-Defined Exception

procedure p_validateSalary
(i_empNo_nr NUMBER, i_new_sal_tx NUMBER)
is
v_current_sal NUMBER;
e_increaseTooLarge EXCEPTION; ➞5
pragma exception_init (e_increaseTooLarge,-20999) ➞6

begin
select salary into v_current_sal
from emp
where empNo=i_empNo_nr;
if (i_newsal_nr/v_current_sal)*100>300
then

raise_application_error (-20999, ‘Cannot triple ➞14
salary for employee #’||i_empNo);

end if;
<....some validation...>

exception
when e_increaseTooLarge then
insert into t_logError ...
raise;

end;

Here are explanations for the called-out lines in the code:

➞5 The exception is declared.

➞6 The exception is associated with a numbered code.

➞14 The built-in procedure RAISE_APPLICATION_ERROR is used
instead of RAISE, because it allows passing not just the exception
itself, but the whole error message. The syntax of that procedure
is very simple, as shown here:

raise_application_error
(<exception code>,<error message>);

This procedure can be extremely helpful, especially for user-defined excep-
tions because now you can explain the problem in greater detail.

The error message must be specified each time the exception is raised. It isn’t
attached directly to the user-defined exception. If that same exception is raised
again by using the RAISE command (rather than RAISE_APPLICATION_
ERROR), SQLERRM will return NULL.

117Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 117

Propagation of Exceptions
The preceding sections give you enough knowledge to work with exceptions
in real life. In complex programs, some procedures within packages might call
functions in different packages that, in turn, call other functions, and so on. It
is important to understand how exceptions propagate between calling pro-
gram units. If an exception is raised in a function called by a procedure, how
does it affect the calling procedure?

How you handle (or choose not to handle) an exception can cause odd
behavior in your program if you don’t understand how exceptions propagate.
If an error occurs in some function being called by your program, your pro-
gram might have to handle that exception.

For example, when loading large amounts of data into a data warehouse,
there are typically very complex rules about how to handle different kinds of
errors. Simple errors (like a missing State code value) are perhaps passed
through and logged for later manual cleanup. Other errors (like an invalid
State code) might cause a referential integrity failure so the record is not
loaded at all. If too many errors exist in a small number of records, this might
indicate that the file being loaded is corrupted and processing should stop. In
each case, the exception is being raised in one program unit and probably
being assessed in an entirely different program unit.

Seeing propagation of exceptions in action
Trying to use a real-world data-migration code example would be a little hard
to follow, so, we have made a simple (though less realistic) example to illus-
trate the principles.

Assume that you have two program units, f_makeAddress_tx and
p_validateZip. The function f_makeAddress_tx takes several text
strings (address, city, state, and zip) and groups them into a single string.
The procedure p_validateZip makes sure that the ZIP code is valid. The
function f_makeAddress_tx calls p_validateZip, as shown in Listing 5-9.

Listing 5-9: Propagating Exceptions between Program Units

create or replace function f_makeAddress_tx (
i_address_tx VARCHAR2,
i_city_tx VARCHAR2,
i_state_tx VARCHAR2,
i_zip_tx VARCHAR2)

return VARCHAR2
is

118 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 118

e_badZip EXCEPTION; ➞8
pragma EXCEPTION_init(e_badZip,-20998); ➞9
v_out_tx VARCHAR2(256);

begin
p_validateZip (i_zip_tx); ➞12
v_out_tx:= i_address_tx||’, ‘|| ➞13

i_city_tx ||’, ‘||
i_state_tx ||’, ‘||
i_zip_tx;

return v_out_tx; ➞17
exception
when e_badZip then ➞19
return i_zip_tx || ‘: Invalid zip code.’;

end;
/
create or replace
procedure p_validateZip (i_zipCode_tx VARCHAR2)
is
e_tooShort EXCEPTION; ➞26
e_tooLong EXCEPTION; ➞27
e_badZip EXCEPTION; ➞28
pragma exception_init(e_badZip,-20998); ➞29
v_tempZip_nr NUMBER;

Begin
if length(i_zipCode_tx)< 5 then
Raise e_tooShort; ➞33

elsif length(i_zipCode_tx)> 6 then
Raise e_tooLong; ➞35

end if;

v_tempZip_nr := to_number(i_zipCode_tx); ➞38

exception
when e_tooLong then ➞41

insert into t_LogError (error_tx)
values(‘long zip’);

raise e_badZip;
when e_tooShort then ➞45

insert into t_logError (error_tx)
values(‘short zip’);

-- raise e_badZip SHOULD be here
when value_error then ➞48

insert into t_LogError (error_tx)
values(‘non-numeric zip’);

raise; -- re-raising the same exception
end;

The following list explains particular lines from Listing 5-9:

➞8 The e_badZip exception is never raised in the function
f_makeAddress_tx. It will be passed from the procedure
p_validateZip.

119Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 119

➞9 The e_badZip exception should be associated with the code
throughout all routines using it; otherwise, there is no way to
indicate that it is exactly the same exception.

➞12 Here is where the program calls p_validateZip.

➞13–17 This is the standard return statement. It will be skipped if an
exception is raised by p_validateZip.

➞19 In the exception handler, if the e_badZip exception is raised by
p_validateZip, the error string address is returned.

➞26-28 Various exceptions are declared within p_validateZip.

➞29 This line associates e_badZip exception with its code.

➞33, 35 These lines raise exceptions in response to the rule violations.

➞38 This line raises a predefined VALUE_ERROR exception if there are
any non-numeric characters in i_ZipCode_tx.

➞41 Logs the error and raises an e_badZip exception that will prop-
agate back to the calling routine.

➞45 Logs the error but forgets to raise e_badZip. If this exception is
raised, the calling program will never know about it.

➞48 Intercepts a predefined exception and re-raises the same excep-
tion after logging the problem.

It is helpful to examine how this program behaves with various inputs. The
following scenarios do just that.

Scenario 1: No rule violations
SQL> declare
2 v_out_tx VARCHAR2(2000);
3 begin
4 v_out_tx:=f_makeAddress_tx(‘123 Main Str’,
5 ‘Redwood City’,’California’,’94061’);
6 DBMS_OUTPUT.put_line(v_out_tx);
7 end;
8 /

123 Main Str, Redwood City, California, 94061 ➞9
PL/SQL procedure successfully completed.

➞9 The function returned the full address string as expected.

No exceptions are raised. Everything follows the normal execution path.

120 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 120

Scenario 2: Short ZIP code
SQL> declare
2 v_out_tx VARCHAR2(2000);
3 begin
4 v_out_tx:=f_makeAddress_tx(‘123 Main Str’,
5’Redwood City’, ‘California’,’940’);
6 DBMS_OUTPUT.put_line(v_out_tx);
7 end;
8 /

123 Main Str, Redwood City, California, 940 ➞9
PL/SQL procedure successfully completed.
SQL>

➞9 The function returned the full address even though the ZIP code is
invalid.

The exception e_tooShort is raised in the p_validateZip procedure.
However, in the exception handler for e_tooShort, you are just adding a
record in the log without raising any other exception (e_badZip is com-
mented out). Therefore, f_MakeAddress_tx treats the ZIP code as valid.

Scenario 3: Non-numeric ZIP code
SQL> declare
2 v_out_tx VARCHAR2(2000);
3 begin
4 v_out_tx:=f_makeAddress_tx(‘123 Main Str’,
5 ‘Redwood City’ , ‘California’,’9406A’);
6 DBMS_OUTPUT.put_line(v_out_tx);
7 end;
8 /

declare
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: ➞12

character to number conversion error ➞13
ORA-06512: at “SCOTT.P_VALIDATEZIP”, line 36 ➞14
ORA-06512: at “SCOTT.F_MAKEADDRES”, line 11 ➞15
ORA-06512: at line 12 ➞16
SQL>

The predefined exception value_error is raised in p_validateZip, which
in turn raises itself after logging an error. The error is propagated back to f_
makeAddress_tx. But there is no exception handler for the value_error
exception in f_makeAddress_tx. In this case, execution is halted.

121Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 121

What shows in the SQL*Plus window (lines 12–16) is an error stack. Oracle
remembers the whole chain of exception calls. This means that if any excep-
tion is raised, you can see all the exceptions raised and the program units
where they were raised.

The stack tells a story that is easily read:

➞12–14 On line 38 (v_tempZip_nr := to_number(i_zipCode_tx);)
of p_validateZip, a numeric or value error was encountered.
(Oracle uses only uppercase for code elements in exceptions,
that’s why you see P_VALIDATEZIP.)

➞15–16 Either that exception was not handled or it was re-raised in
the exception handler. In this case, it was re-raised on line 12
(p_validateZip (i_zip_tx);) of f_makeAddress_tx.

Scenario 4: Long ZIP code
SQL> declare
2 v_out_tx VARCHAR2(2000);
3 begin
4 v_out_tx:=f_makeAddress_tx(‘123 Main Str’,
5 ‘Redwood City’,’California’,’940612345’);
6 DBMS_OUTPUT.put_line(v_out_tx);
7 end;
8 /

940612345: Invalid zip code. ➞9
PL/SQL procedure successfully completed.

➞9 The function f_makeAddress_tx returned the invalid message
showing that the e_badZip exception was raised in f_make
Address_tx.

In Scenario 3, you see that exceptions are shown in the error stack in the
reverse order of calls. This means that exceptions are handled from the lowest
to the highest level. The exception e_tooLong was raised in p_validate
Zip, which in turn raised e_badZip, which is propagated back to f_make
Address_tx.

Because the exception e_badZip in both program units is associated with
the same code (–20998), the exception handler of the parent routine is able to
detect that e_badZip refers to the same exception in both cases.

Handling exceptions without
halting the program
At times you want to immediately detect and handle the exception and then
continue in your code. You might not want to stop execution of your program

122 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 122

unit. Of course, you can always make the “exception-risky” part of code into
its own program unit to isolate the exception, but sometimes it is convenient
just to make the area of the program an anonymous PL/SQL block (as we dis-
cuss in Chapter 3) and handle the exception right in that block.

Assume you are validating a ZIP code as part of a much larger routine. You
want to detect that there was a bad ZIP code and log the problem but you
don’t want to stop the whole execution of the program. Listing 5-10 is a
rewrite of Listing 5-3 crafted to use this technique.

Listing 5-10: Raising an Exception Local PL/SQL Block

function f_get_speed_nr
(i_distance_nr NUMBER, i_timeSec_nr NUMBER)
return NUMBER
is
v_out_nr NUMBER;

begin ➞6
-- could be lots of code here

begin ➞9
v_out_nr:= i_distance_nr/i_timeSec_nr;

exception
when zero_divide then
insert into t_logError (error_tx)
values (‘Divide by zero in the F_GET_SPEED_NR’);

end; ➞15

-- could be lots of more code here
return v_out_nr; ➞18

end;

The following list gives more details about Listing 5-10:

➞6 This is the beginning of the main routine. There can be any
amount of code here prior to the anonymous PL/SQL block.

➞9–15 This is the anonymous PL/SQL block with its own exception
handler.

➞18 This is the RETURN statement. Notice how you do not need a
RETURN in the anonymous PL/SQL block. After the exception is
handled, processing continues after the block and the RETURN will
be encountered as long as the exception raised in the anonymous
PL/SQL block is handled within its exception handler. If any excep-
tions other than ZERO_DIVIDE were raised in the anonymous
PL/SQL block, the main routine would detect it and the RETURN
statement would not be executed.

123Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 123

Avoiding exceptions raised in declaration
part and exception handler
Exceptions can be handled only if they’re raised in the body of the program
unit. Exceptions raised in the declaration section or in the exception handler
cannot be handled within the same program unit. You should avoid placing
any code declaration section or exception handler that can raise an excep-
tion anywhere other than in the body of your program where it can be explic-
itly handled.

We discuss exceptions raised in the declaration part first. Assume that you
decided to simplify your code by moving the assignment of the variable
v_tempZip_nr in the procedure p_validateZip from the body to the dec-
laration, as shown in Listing 5-11. This means that you might raise an excep-
tion in the declaration section of the program.

Listing 5-11: Raising an Exception in the Declaration Section

procedure p_validatezip (i_zipCode_tx VARCHAR2)
is
e_tooShort EXCEPTION;
e_tooLong EXCEPTION;
e_badZip EXCEPTION;
pragma exception_init(e_badZip,-20998);
v_tempZip_nr number:=to_number(i_zipCode_tx); ➞7

begin
if length(i_zipCode_TX)< 5 then
raise e_tooShort;

elsif length(i_zipCode_TX)> 6 then
raise e_tooLong;

end if;
exception
when e_tooLong then

insert into t_LogError (error_tx)
values(‘long zip’);

raise e_badZip;
when e_tooShort then

insert into t_logError (error_tx)
values(‘short zip’);

-- raise e_badZip SHOULD be here
when VALUE_ERROR then

insert into t_logError (error_tx)
values(‘non-numeric zip’);

raise e_badZip;
end;

➞7 This line of code moved the assignment statement from the
body of the program to the declaration section and a variable
initialization.

124 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 124

Note that the exceptions raised in the declaration section are not handled by
the exception handler.

SQL> declare
2 v_out_tx VARCHAR2(2000);
3 begin
4 v_out_tx:=f_makeAddress_tx
5 (‘123 Main’,’Redwood City’,’California’,’9406A’);
6 DBMS_OUTPUT.put_line(v_out_tx);
7 end;
8 /

declare
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character to

number conversion error
ORA-06512: at “SCOTT.P_VALIDATEZIP”, line 7
ORA-06512: at “SCOTT.F_MAKEADDRES”, line 12
ORA-06512: at line 4
SQL>

The exception handler for value_error in p_validateZip (remember
that Oracle displays object names in uppercase which is why you see P_
VALIDATEZIP) was never executed. When the exception was raised, control
did not pass to the exception handler. The exception handler is used only
when the exception is raised in the body of the program unit. Exceptions
raised in the declaration section cannot be handled by the exception handler
in that unit.

Exactly the same problem is applicable to exceptions raised in the exception
handlers. The example shown in Listing 5-12 proves that case.

Listing 5-12: Exceptions Raised in the Exception Handler

procedure p_validatezip (i_zipCode_tx VARCHAR2)
is
e_tooShort EXCEPTION;
e_tooLong EXCEPTION;
e_badZip EXCEPTION;
pragma exception_init(e_badZip,-20998);
v_tempZip_nr NUMBER;

begin
if length(i_zipCode_tx)< 5 then
Raise e_tooShort;

elsif length(i_zipCode_tx)> 6 then
Raise e_tooLong;

end if;
v_tempZip_nr :=to_number(i_zipCode_tx);

exception
when e_tooLong then

(continued)

125Chapter 5: Handling Exceptions

10_599577 ch05.qxp 5/1/06 12:12 PM Page 125

Listing 5-12 (continued)
raise e_badZip;

when e_tooShort then
raise e_badZip;

when VALUE_ERROR then
raise e_badZip; ➞23

when e_badZip then ➞24
insert into t_LogError (error_tx)

values(‘problem with Zip’);
raise;

end;

Here’s what’s going on at the end of Listing 5-12:

➞23 Raises the e_badZip exception.

➞24 Should handle any e_badZip exceptions, but it does not handle
the e_badZip exception raised in 23.

Writing Exceptional Exceptions
Any PL/SQL block can contain an exception handler. Keep the following rules
in mind to help you write exception handlers. The exception handler:

� Is the last part of the program unit between the last statement of the
main body and the END; statement.

� Always starts with the word EXCEPTION.

� Handles one or more exceptions with the following structure:

when <exceptionA> then
statement1A;
statement2A;

when <exceptionB> then
statement1B;
statement2B;

� Can have any number of statements in each exception block.

� May conclude with a catchall exception to intercept all exceptions not
otherwise handled, using the following structure:

when others then
statement1;
statement2;

But you should be very careful to never use WHEN OTHERS THEN NULL;.

� May include a special statement RAISE that raises the same exception
that was intercepted.

126 Part II: Getting Started with PL/SQL

10_599577 ch05.qxp 5/1/06 12:12 PM Page 126

Chapter 6

PL/SQL and SQL Working Together
In This Chapter
� Finding out how cursors work

� Declaring cursors: when and where

� Looking at the pros and cons of using implicit cursors

� Making use of cursor variables

� Structuring cursors for updates and shortcuts

� Using PL/SQL functions in SQL

The main reason to use PL/SQL as a programming language is that it works
really well with SQL. PL/SQL works better with SQL than any other pro-

gramming language does. This cooperation works both ways; you can embed
SQL in PL/SQL code, and you can call PL/SQL functions within SQL struc-
tures. This chapter shows you how to use both languages together more
effectively. For example, you find out

� How to integrate SQL into PL/SQL with cursors: Cursors are one of the
most efficient portions of the PL/SQL language. The ability to use SQL to
define a set of information and then create a cursor to loop through this
information is one of the main reasons for using PL/SQL.

� How cursors allow PL/SQL to retrieve information from an Oracle
database: PL/SQL’s ability to easily and efficiently handle this task is one
of its core strengths as a programming language. A PL/SQL program with
effective cursor handling can execute many times faster than a Java pro-
gram written to perform the same task running on an application server.

� How to call PL/SQL functions in SQL: Calling these functions gives you
the power to have queries return almost any information you can imag-
ine. Any column in a SQL query can be calculated from a PL/SQL func-
tion stored in the database.

11_599577 ch06.qxp 5/1/06 12:12 PM Page 127

Cursors: What They Are
and How to Use Them

Cursors are special PL/SQL objects that you define in the declaration section
of a program. But declaring a cursor is just the beginning. The code in a PL/
SQL block opens the cursor, fetches data from the cursor, and then closes the
cursor. A simple program demonstrating these cursor operations is shown in
Listing 6-1.

Listing 6-1: Declaring a Cursor

declare ➞1
cursor c_countEmps is
select count(*)
from emp;

v_out_nr NUMBER; ➞5
begin

open c_countEmps; ➞7
fetch c_countEmps into v_out_nr; ➞8
close c_countEmps; ➞9
DBMS_OUTPUT.put_line(‘number of emps is:’||v_out_nr);

end;

Listing 6-1 declares a cursor that will return a single record. This cursor is
called an explicit cursor, meaning that you explicitly declare it in a declara-
tion section of the program and manipulate the cursor elsewhere in the pro-
gram. We discuss another kind of cursor (called implicit) later in this chapter.

➞1-5 The DECLARE section defines the cursor and the variable where
you will store the returned result.

➞7 First, you need to open the cursor by using the OPEN command.

➞8 When the cursor is open, the FETCH command fetches the
cursor’s contents into an output variable.

➞9 Finally, clean up after yourself and close the cursor by using the
CLOSE command

This sequence of operations represents the basic cursor-routine theme, but
variations on this theme allow you great flexibility in where you declare cur-
sors and how you manipulate and use them. In addition to a single piece of
information (the count of employees), you can use cursors to

� Retrieve many rows of data by setting up cursors that return the infor-
mation from multiple columns in a SQL query. This technique lets you
use any SQL query in your program no matter how many tables or
columns it references.

128 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 128

� Loop through, examine, and manipulate the database records returned
by a SQL query. For example, you might want to loop through all your
customers and generate an invoice for each one.

� Loop through cursor records within other cursors by using the pro-
gramming technique known as nesting. For example, you would use
one cursor to loop through departments and a nested cursor to find the
employees in each department.

� Change cursor behavior based on passed parameters. This allows you
to better encapsulate the logic of the cursor without having to reference
global variables.

The sections that follow explain how you use cursors in these four different
ways, so read on for details.

Returning more than one
piece of information
A cursor can return one or more pieces of information. SQL statements may
have lots of columns in the SELECT portion of the query, and cursors cer-
tainly support this.

In Listing 6-1 for counting employees, only one value was returned by the
cursor. Specifying where the information was returned was simple because
only one variable was defined and it was passed to an output variable in the
INTO clause. But what if your cursor returns a whole list of values? In this
case, you have two options:

� Explicitly declare as many variables as you need for all the values that
the cursor returns and list those variables after the INTO in the FETCH
command.

� Explicitly define a record variable consisting of all the variables you need
and then just list the name of the record variable in the INTO clause of
the FETCH command. If you use a record variable, you can use Oracle’s
%ROWTYPE declaration to get Oracle to automatically define a record
variable with the right number of variables in the right order.

In the following sections, you find out how these two options work.

Option 1: Listing the variables separately
Listing variables separately is the quick and dirty option. You can explicitly
declare where you want the values of the cursor returned by using a comma-
delimited list after the INTO keyword in the FETCH statement.

129Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 129

Be sure that the number of variables you return to is exactly the same as the
number retrieved and that they’re listed in the same order as the elements in
the cursor. Also make sure that the variables you’re fetching into are the cor-
rect datatype, as shown in Listing 6-2.

Listing 6-2: Returning Cursor Variables the Quick and Easy Way

declare
cursor c_countemps is
select count(*), sum(sal)
from emp;

v_count_nr NUMBER;
v_sum_nr NUMBER; ➞6

begin
open c_countEmps;
fetch c_countEmps into v_count_nr, v_sum_nr;
close c_countEmps;
DBMS_OUTPUT.put_line

(‘number of emps is:’||v_count_nr);
DBMS_OUTPUT.put_line

(‘sum of emp salaries is:’||v_sum_nr); ➞14
end;

➞14 Shows the number retrieved.

Option 2: Defining a record type
You can declare a record variable that consists of one or more elements and
fetch the cursor into that variable. You can find out more about record variables
in Chapter 11. For now, you need to know that record variables in PL/SQL are
a way of representing a single row from the table, where you define attributes
in the same way that you would define attributes in the table definition.

When you declare a record, the list of elements is in the declaration section
and not in the FETCH command in the middle of the executable code. This
has two advantages:

� Your code is easier to read.

� If you want to use the same cursor in two different places, you don’t have
to repeat the whole list of elements, only the name of one record variable.

Listing 6-3 shows an example of this option.

Listing 6-3: Retrieving Cursor Variables with a Record Variable

declare
cursor c_countEmps is
select count(*) , sum(sal)
from emp;

130 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 130

type rt_testRecType is record ➞4
(v_count_nr NUMBER,
v_sum_nr NUMBER);

r_testRec rt_testRecType; ➞7
begin

open c_countEmps;
fetch c_countEmps into r_testRec; ➞10
close c_countEmps;
DBMS_OUTPUT.put_line(‘number of emps is:’||

r_testRec.v_count_nr);
DBMS_OUTPUT.put_line(‘sum of emp salaries is:’||

r_testRec.v_sum_nr);
end;

Check out these details about the code:

➞4 This code declares the RECORD datatype, indicating that you need
a place to store a row of data consisting of two numbers.

➞7 Here you declare a record variable of the newly created datatype.

➞10 This line fetches the cursor into the record variable.

Keep in mind that the record and the cursor must have the same variables,
with the same datatype, listed in the same order. Also note how the compo-
nents of the record are referred to in the DBMS_OUTPUT statements. Because
each variable is now part of a record, you need to refer to it by using dot
notation. For example, r_testRec.v_sum_nr refers to the number field
v_sum_nr, which is declared to be part of the record r_testRec.

In both previous options (declaring independent variables and declaring a
special RECORD type) you still have to laboriously list all the elements to
which the cursor data was being returned. Oracle provides a shortcut that
eliminates this tedious work. You can allow the cursor to specify the record
for you by using %ROWTYPE. Instead of having to list all the elements in a
record, you simply declare it to be the same structure as a cursor that you’ve
previously declared or the same type as a table in the database, provided
that you are retrieving all the columns in the table into the cursor. This has
the following advantages:

� You have less code to write, read, and correct.

� If you need to change the data that the cursor retrieves, you have to
make only one change to your code in the SELECT clause of the cursor
declaration. Any record referencing the cursor via %ROWTYPE automati-
cally changes so that the record always matches the cursor.

Listing 6-3 written using a %ROWTYPE declaration would look like Listing 6-4.

131Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 131

Listing 6-4: Defining a Record Type for a Cursor by Using %ROWTYPE

declare
cursor c_countEmps is
select count(*) count_nr, sum(sal) sum_nr ➞3
from emp;

r_testRec c_countEmps%ROWTYPE; ➞5
begin

open c_countEmps;
fetch c_countEmps into r_testRec;
close c_countEmps;
DBMS_OUTPUT.put_line(‘number of emps is:’||

r_testRec.count_nr); ➞11
DBMS_OUTPUT.put_line(‘sum of emp salaries is:’||

r_testRec.sum_nr);
end;

Here’s what’s happening in the listing:

➞3 Because you’re planning to use a cursor as a reference for
datatype, you must assign aliases to columns in the resulting list
that don’t have real names. (For example, all function results
require aliases, but EMPNO is valid by itself.) These aliases will be
used as column names in the resulting record.

➞5 Because the record r_testrec takes its structure from the
cursor c_counttemps, you can be sure that r_testrec has
exactly the right structure for the cursor. If you change the cursor,
you don’t need to modify the record structure of r_testrec. It
will adjust itself automatically!

➞11 The field name in the record variable is the same as the alias you
assigned in the cursor.

Looping through multiple records
In Listing 6-4, only a single row of data is retrieved. However, in the real world,
most situations require you to loop through many records and process them.
For example, a payroll system must loop through all employees and write
checks for all of them.

These real-world systems might have to deal with thousands or even millions
of records retrieved by a single query. The process must not only read those
thousands or millions of rows, but also, in most cases, modify the information
in a record or use the information in the record to do something else entirely,
such as generate an invoice or statement. You can manage such a process by

132 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 132

integrating the use of a cursor with any of the looping mechanisms we describe
in Chapter 4.

Listing 6-5 shows the basic syntax for looping through the records in a cursor.

Listing 6-5: Looping through Records in a Cursor

declare
cursor c_emp is
select *
from emp;

r_emp c_emp%ROWTYPE;
begin

open c_emp;
loop

fetch c_emp into r_emp;
exit when c_emp%NOTFOUND; ➞10
DBMS_OUTPUT.put_line(r_emp.eName);

end loop;
close c_emp; ➞12

end;

Whenever you have a loop, it must have a beginning, a middle, an end, and,
most important, a way to get out of the loop. The program needs to know
when to get out of the loop. With cursors, the time to exit the loop is usually
when there are no more records to process.

➞10 Detects that there are no more records to process and ends the
looping. %NOTFOUND is a special cursor variable that returns TRUE
when the last fetch to that cursor does not return any records. In
Listing 6-5, the program prints out the name of each employee.
When there are no more employees to process, the FETCH com-
mand won’t return any data, and c_emp%NOTFOUND will return
TRUE. This ends the loop and immediately jumps to the first line
of code after the END LOOP statement.

➞12 This code line will execute when the loop terminates.

Placing cursors in nested loops
You can loop through cursor records within other cursors. For example, sup-
pose you want to print a roster of all employees in your company, listed by
department. To do this, you would loop through records for each department
in your company and, within each department, loop through the employees.
You can set up two cursors and loop through all department and employee
records in a very efficient way, as shown in Listing 6-6.

133Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 133

Listing 6-6: Cursors in Nested Loops

declare
cursor c_dept is ➞2
select *
from dept;

r_dept c_dept%ROWTYPE;
cursor c_empInDept (cin_deptNo NUMBER) is ➞6
select *
from emp
where deptNo = cin_deptNo; ➞9

r_emp c_empInDept%ROWTYPE;
begin

open c_dept;
loop

fetch c_dept into r_dept;
exit when c_dept%NOTFOUND;
--<... do something with each department
--<... such as initialize total salary

open c_empInDept (r_dept.deptNo);
loop

fetch c_empInDept into r_emp;
exit when c_empInDept%NOTFOUND;
--<... do something with each employee
--<... such as change their salary

end loop;
close c_empInDept;

end loop;
close c_dept;

end;

Here are some more details about Listing 6-6:

➞2-5 This line declares the department cursor and record.

➞6-9 These lines declare the employee cursor and record.

➞9 How are these cursors different? The employee cursor specifies
the parameter in cin_deptNo (department number to be passed
in). Each time the cursor c_empInDept is called, it returns only
the employees in the department specified by the parameter.

Passing parameters to cursors
Cursors are very useful constructs. They’re the primary method of retrieving
information from the database. One of the things you need to be able to do is
dynamically control the cursor when the program is running.

134 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 134

For example, if you want to run your payroll for only a single department, it
would require a lot of work to create separate cursors for each department.
Instead, you can use a single cursor that will return the employee records for
any department you specify. The way you tell the cursor which department to
return records for is by passing the department ID to the cursor as a parameter.

Usually, parameters are used in the WHERE clause of the query to filter what
data are returned.

To illustrate the basic syntax of passing parameters in the WHERE clause,
Listing 6-7 counts the number of employees in a specified department.

Listing 6-7: Basic Syntax for Passing Parameters in a Cursor

declare
cursor c_emp (cin_deptNo NUMBER) is ➞2
select count(*)
from emp
where deptNo = cin_deptNo;

v_deptNo dept.deptNo%type:=10;
v_countEmp NUMBER;

begin
open c_emp (v_deptNo); ➞9
fetch c_emp into v_countEmp; ➞10
close c_emp; ➞11

end;

When passing a parameter to a cursor, the syntax is different from your basic
cursor in the following ways:

➞2 You must declare the parameter as part of the cursor definition.

➞9 When you open the cursor, you need to pass a parameter (of the
correct type) to the cursor.

➞10, 11 When fetching and closing the cursor, you don’t specify the
parameter.

As illustrated in Listing 6-7, the most common use of a parameter is as a vari-
able referenced in the WHERE clause. You can pass a value to the parameter in
various ways.

You can pass a literal value, as in

open c_emp (10);

or a variable, whether it is a simple variable like

open c_emp (v_deptNo)

135Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 135

or part of a record, like this:

open c_emp (r_emp.deptNo);

Use parameters to avoid references to variables outside the cursor. Good
structured programming style involves trying to make your code modular,
meaning that it is self-contained and has no references to anything outside
the module. By using cursor parameters, not only is your code more flexible,
it is easier to read and maintain.

There are various places in the SELECT statement where you reference a
parameter. A few examples follow in Table 6-1. All parameters are prefixed
with cin (cursor in).

Table 6-1 SELECT Statement Examples
Part of SQL Statement Example

Where select ...
from emp
where deptNo = cin_deptNo

Group by . . . having select count(*)
from emp
group by deptNo
having deptNo > cin_deptNo

Connect by . . . start with select ...
from emp
start with empNo = cin_empNo
connect by prior empNo =
prior manager

Other than the WHERE clause, the HAVING clause, and the START WITH
clause, a parameter cannot change the query. For example, you can’t change
what is returned in the SELECT clause by using a parameter. Neither can you
change the columns in the ORDER BY clause by using a parameter. For exam-
ple, if you wanted the records returned to be in order by employee last name
instead of by Social Security number, that would require you to change the
name of a column listed in the ORDER BY clause:

order by lname

instead of

order by ssn

136 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 136

Because parameters can change only values and not names of columns or
tables in the query, you can’t use them to change the FROM, ORDER BY, or
GROUP BY clauses. If you want to modify these parts of the query dynami-
cally, you need to use a REF cursor or dynamic PL/SQL (which are described
in Chapter 13).

Knowing Where to Declare Cursors
You can declare cursors in many different places. Where you place the cursor
definition depends upon where and how you’re going to use the cursor. If
you’re going to use a cursor only once, you can declare it right next to where
it is called. (But are you very sure you are only going to use it once? Famous
last words. . . .) If you plan to reuse the same query many times in the appli-
cation, you shouldn’t have to declare the same cursor every time you want to
run the query. You should declare the cursor in a place where it can easily be
called by all parts of the application.

The discussion of functions and procedures in Chapter 3 covers program
scope. The point where you declare the function or procedure determines
where you are able to call that function or procedure. The same principle
applies to cursor declaration. Table 6-2 offers an overview of what we mean.
In the following sections, you can find out how to place a cursor declaration
in these various locations. For more information about packages, please see
Chapter 3.

Table 6-2 Where to Define the Cursor?
If Then Define the Cursor Here

You use the cursor only The header of the program unit
once in program unit

The program unit is large The local (anonymous) PL/SQL block (for more
and you need the cursor information about anonymous PL/SQL blocks,
in a limited scope see Chapter 3)

You use a cursor throughout a The package body (for more information about
package, but not elsewhere packages, see Chapter 7)

You need to access the The package specification
cursor anywhere

Always define your cursor in as restrictive a scope as possible, but as gener-
ally as needed. Cursors should be accessible enough that you can avoid
having to define the same cursors over and over again.

137Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 137

Defining cursors in the header
of the program unit
The header of the program unit (a function or procedure) is the most common
place to declare a cursor. If you declare the cursor in the header of the pro-
gram unit, you can call it only within that program unit.

Even if a cursor is used only once in a program unit, it is common to define
all the cursors used in a program unit in the declaration header of that unit.
Declaring a cursor in an anonymous PL/SQL block is quite rare. You should
probably avoid doing so because it adds lines to your code body and can
make it hard to find the cursor declaration. (Most programmers immediately
look in the declaration section of a program for cursor declarations.)

If you have so many cursors that you start to lose track of them, the program
unit is probably too big and should be broken up into smaller units.

Listing 6-8 is an example showing a cursor declared within a PL/SQL procedure.

Listing 6-8: Declaring a Cursor within a Procedure

create or replace procedure p_printEmps is ➞1
cursor c_emp is ➞2
select *
from emp;

r_emp c_emp%ROWTYPE;
begin

open c_emp;
loop
fetch c_emp into r_emp;
exit when c_emp%NOTFOUND;
DBMS_OUTPUT.put_line(r_emp.eName);

end loop;
close c_emp;

end;

Note that there is no DECLARE used in a procedure. This clause is only
needed for anonymous blocks. The declaration (line 2) begins right after the
CREATE OR REPLACE PROCEDURE statement (line 1).

Defining cursors in the local PL/SQL block
If your program unit is very large and you need the cursor only in a very lim-
ited scope, you can define a small local PL/SQL block and define the cursor to
exist only within that scope.

138 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 138

Listing 6-9 is an example of how you define a cursor in an anonymous PL/SQL
block.

Listing 6-9: Defining a Cursor in an Anonymous PL/SQL Block

create or replace procedure p_printEmps is ➞1
begin –- for main function

...Lots of other code could go here ➞4

declare ➞6
cursor c_emp is ➞7
select *
from emp;

r_emp c_emp%ROWTYPE;
begin

open c_emp; ➞11
loop

fetch c_emp into r_emp;
exit when c_emp%NOTFOUND;
DBMS_OUTPUT.put_line(r_emp.eName);

end loop;
close c_emp;

end; -- for local block ➞18

...Lots of other code could go here, too

end; --p_printEmps

Here are some details about Listing 6-9:

➞1 This is the beginning of the program unit you’re creating.

➞4, 18 The cursor isn’t defined here and can’t be referenced.

➞6 This line starts the anonymous PL/SQL block.

➞7 Here, you declare the cursor to be visible only within the anony-
mous block.

➞11 This line opens the cursor.

Defining cursors in the package body
If you plan to reuse a cursor throughout a package but don’t anticipate using
it outside that package, you can define the cursor in the package body, as
shown in Listing 6-10.

139Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 139

Listing 6-10: Declaring a Cursor in the Package Body

create or replace package body bigUtil is
cursor c_emp is ➞2
select *
from emp;

r_emp c_emp%ROWTYPE;

procedure p_printEmps is
r_emp c_emp%ROWTYPE;

begin
open c_emp; ➞10
loop

fetch c_emp into r_emp;
exit when c_emp%NOTFOUND;
DBMS_OUTPUT.put_line(r_emp.eName);

end loop;
close c_emp;

end; --p_printEmps

--- lots of other functions or procedures ➞19
---could be defined here

end; --bigUtil

Here are the details about Listing 6-10:

➞2 This is where the cursor is declared.

➞10 This is where the cursor is referenced. Notice that the cursor isn’t
declared within the procedure.

➞19 The same cursor could be referenced in other program units
within the package body.

If you declare the cursor in the package body (outside any function or proce-
dure), the same cursor can be used by any procedure or function in the pack-
age body.

Defining cursors in the package spec
If you have a cursor that needs to be accessible anywhere, you need to
declare it in the package specification. That way, any program unit in the same
schema can use the cursor. If you grant privileges on the package to other
schemas, anyone who can see the package can execute the cursor. For more
information about packages, see Chapters 3 and 7. Consult any good Oracle
SQL book (for example, Oracle Database 10g: The Complete Reference, by
Kevin Loney, McGraw-Hill, 2004) for information about granting privileges to
other schemas.

140 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 140

When you reference the cursor within the same package where it was declared,
you can do it without any qualifier, the same way as shown earlier in the pack-
age body example (refer to Listing 6-10).

If you’re using the cursor in a different package from where the cursor was
declared, you need to prefix the cursor with the package name, as shown in
Listing 6-11.

Listing 6-11: Calling a Cursor Declared in a Different Package

--Here is the package spec where the cursor is declared.

create or replace package pkg_Util is
cursor c_emp is ➞2
select * from emp;

r_emp c_emp%ROWTYPE;
end;

--Here is a different package that references the cursor

create or replace package body pkg_aDifferentUtil is
procedure p_printEmps is
begin

open pkg_Util.c_emp; ➞11
loop

fetch pkg_Util.c_emp into pkg_Util.r_emp; ➞13
exit when pkg_Util.c_emp%NOTFOUND; ➞14
DBMS_OUTPUT.put_line(pkg_Util.r_emp.eName);➞15

end loop;
close pkg_Util.c_emp; ➞17

end;
end;

Details about Listing 6-11 are shown here:

➞2 Declares the cursor in the first package.

➞11 References the cursor in an entirely different package. Note that
you have to preface the cursor name with the first package
name (pkg_Util.c_emp).

➞11, Note that all references to the cursor must be prefaced with the
package name where the cursor was declared.

Placing cursors in package specifications means that any program unit can
use them. You should do this only when you expect the cursor to be used
outside of the package. This has the significant advantage of code reuse, but
it also has disadvantages. What happens if a developer wants to modify the
cursor at a later date? You should perform a full impact analysis to ensure
that any changes to the cursor won’t adversely affect other code.

141Chapter 6: PL/SQL and SQL Working Together

13–15,
17

11_599577 ch06.qxp 5/1/06 12:12 PM Page 141

Being Explicitly Smart
with Implicit Cursors

In some cases, Oracle doesn’t require you to manually create a cursor as a
way of accessing existing data. Instead of explicit cursors, it uses implicit cur-
sors and drives them automatically so that no more OPEN/FETCH/CLOSE com-
mands are needed. You need to do less coding than the explicit cursors
(which we discuss in the rest of this chapter), and implicit cursors some-
times even execute a tiny bit faster than the corresponding explicit cursor.

Although implicit cursors make coding easier in some regards, they can be
tricky to work with unless you’re careful. In the following section, you find out
how to use a basic implicit cursor and how to avoid problems when using them.

Retrieving a single row: The basic syntax
If you’re retrieving a single row of data (like information for a single employee,
or for a count of employees in a single department), you can use an implicit
cursor. You do not even need to specify the cursor. You can use a SELECT
INTO command. For example, to get the count of all employees in an organiza-
tion, you might write something like the following example:

declare
v_out_nr NUMBER;

begin
select count(*) into v_out_nr ➞4
from emp;
DBMS_OUTPUT.put_line

(‘the number of emps is:’||v_out_nr);
end;

➞4 Takes the place of the explicit cursor declaration as well as open-
ing, fetching, and closing the cursor. All cursor activity is replaced
by a single SELECT INTO command.

This code is much easier to write than an explicit declaration of the cursor
with an associated OPEN/FETCH/CLOSE code sequence. Behind the scenes,
Oracle is still creating a cursor called an implicit cursor.

To use a SELECT INTO command, the query must return exactly one row. If
the SELECT statement returns no rows, the code will throw a NO_DATA_FOUND
exception. If it returns more than one row, the code will throw the TOO_MANY_
ROWS exception. Fortunately, you can still use implicit cursors even if your
code might not return any row or more than one row. The next section has
the details.

142 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 142

Handling exceptions in implicit cursors
You can still use an implicit cursor with the SELECT INTO command even if
there is a possibility of returning no rows (or more than one row) from the
query. For example, if you want to have a function that returns the name of a
department given its department number, there’s a chance someone might
enter a nonexistent department number, and you need a way to handle that
scenario. In that situation, you might write your function like this:

create or replace
function f_getdName_tx (in_deptNo NUMBER)
return VARCHAR2 is

v_out_tx dept.dName%TYPE;
begin

select dName into v_out_tx
from dept
where deptNo = in_deptNo;
return v_out_tx;

exception
when no_data_found then

return ‘NO SUCH DEPARTMENT’;
end f_getdName_tx;

In this example, because deptNo is the primary key of the table, you don’t
have to worry about the query returning too many rows. But if a user asked
for the name of a department that doesn’t exist, the situation would be
addressed in the exception handler.

Returning an implicit cursor into a record
One downside of an implicit cursor is that there is no easy way to declare a
record into which to return the cursor. There are two workarounds that you
might find useful.

First, if the query columns from the cursor are the same as the columns in a
single table, you can use the %ROWTYPE clause on the table name as shown
Listing 6-12.

Listing 6-12: Using the %ROWTYPE Clause on the Table Name

declare
r_emp emp%ROWTYPE; ➞2

begin
select emp.* into r_emp ➞4
from emp,

dept
where emp.deptNo = dept.deptNo

(continued)

143Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 143

Listing 6-12 (continued)
and emp.deptNo = 20
and emp.job = ‘MANAGER’;
DBMS_OUTPUT.put_line

(‘Dept 20 Manager is:’||r_emp.eName);
end;

Check out the details about lines 2 and 4:

➞2 Declares a record based on the EMP table because the cursor uses
the same structure for the records returned by the cursor.

➞4 Fetches the implicit cursor into the record defined in line 2.

In Listing 6-12, the query returns only the columns from the EMP table, so you
could specify the cursor record by using the EMP table.

Another possible workaround might be needed if the cursor returns many
columns from different tables. In this case, you could explicitly declare a
record variable, as we discuss in the previous section “Returning more than
one piece of information.”

Accessing Status Info by
Using Cursor Variables

Oracle can tell you the status of a cursor. Specifically, you can find out

� Whether the cursor is open

� Whether a row was found the last time the cursor was accessed

� How many records have been returned

All cursors have properties that report their state of operation. For example,
in Listing 6-5, earlier in this chapter, the syntax %NOTFOUND is used to termi-
nate a loop. Because the syntax used to capture the state of or information
about cursors enables you to make decisions in your code, they are called
“cursor variables.” There are four variables:

� %FOUND checks whether a fetch succeeded in bringing a record into a
variable. Returns TRUE if the fetch succeeded, FALSE otherwise.

� %NOTFOUND the reverse of %FOUND. Returns FALSE if the fetch suc-
ceeded, TRUE otherwise.

� %ISOPEN checks whether a cursor is open.

� %ROWCOUNT returns the number of rows processed by a cursor at the
time the %ROWCOUNT statement is executed.

144 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 144

The variable properties of explicit cursors are referenced as

cursor_name%VARIABLE_NAME

Specifically, to reference the c_emp cursor with the %FOUND variable, you’d
do it like this:

c_emp%FOUND

For implicit cursors, the syntax is always sql%variable_name. The follow-
ing section explains how to use cursor variables with both explicit and
implicit cursors in more detail.

The last variable, %ROWCOUNT, is a regular number variable, but the first
three are Boolean variables that return a logical TRUE or FALSE. They can be
used together with other logical expressions. For example, if you want to
ensure that the fetch succeeded and then check the value returned, you can
combine them as follows:

if c_empInDept%FOUND and r_emp.eName = ‘King’...

Checking the status of explicit cursors
The following example illustrates how to use cursor variables with explicit
cursors. Listing 6-13 shows the values of cursor variables on a cursor that
loops through employee names in a department.

Listing 6-13: Using Explicit Cursors

Declare
cursor c_emp (cin_deptNo NUMBER) is
select eName
from emp
where deptNo=cin_deptNo;

v_eName VARCHAR2(256);
begin

if not c_emp%ISOPEN then ➞8
DBMS_OUTPUT.put_line(‘Cursor is closed’);

end if;

open c_emp(10);

if c_emp%ISOPEN then ➞14
DBMS_OUTPUT.put_line(‘Cursor is opened’);

end if;

loop
fetch c_emp into v_eName;

(continued)

145Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 145

Listing 6-13 (continued)
if c_emp%NOTFOUND then ➞20

DBMS_OUTPUT.put_line(‘No rows to fetch!’);
exit; -- the same as exit when c1%NOTFOUND;

end if;

DBMS_OUTPUT.put_line
(‘Processed:’||c_emp%rowcount); ➞26

end loop;

close c_emp;

if not c_emp%ISOPEN then ➞31
DBMS_OUTPUT.put_line(‘Cursor is closed’);

end if;
end;

In this case, the output of Listing 6-13 would be:

Cursor is closed
Cursor is opened
Processed:1
Processed:2
Processed:3
No rows to fetch!
Cursor is closed

Using %ISOPEN showed exactly when the cursor was opened; %ROWCOUNT
showed the number of currently fetched rows; and %NOTFOUND showed when
there were no more rows to fetch.

There are some issues to be aware of:

� If you use the %FOUND, %NOTFOUND, and %ROWCOUNT cursor variables
before the cursor is opened or after the cursor is closed, they will raise
an exception. If you see an exception from this situation, you probably
made a mistake in your code.

� Values of %FOUND, %NOTFOUND, and %ROWCOUNT are changed after every
fetch. So, the status of these variables refers to the status of the cursor
after the last fetch from the cursor.

� If there are no more rows to fetch, %ROWCOUNT keeps the number of suc-
cessfully fetched records until the cursor is closed. No matter how many
unsuccessful fetches you make from a cursor, the value of this variable
won’t change.

Checking the status of implicit cursors
You can use the same cursor variables for implicit cursors, too. When used
with an implicit cursor, the value of a cursor variable corresponds to the last

146 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 146

statement needing an implicit cursor that was fired in the current procedural
block (the area between BEGIN and END). Because there is no cursor name,
you use SQL rather than the cursor name. In the following example, look
at the value of cursor variables on an implicit cursor that updates an
employee’s salary:

SQL> begin
2 update emp
3 set sal=sal*1
4 where eName=’KING’;
5
6 DBMS_OUTPUT.put_line(‘Processed:’||sql%rowcount);
7
8 if sql%FOUND then
9 DBMS_OUTPUT.put_line(‘Found=true’);
10 else
11 DBMS_OUTPUT.put_line(‘Found=false’);
12 end if;
13 end;
14 /
Processed:1
Found=true
PL/SQL procedure successfully completed.
SQL>

As you can see from this example, cursor variables are wonderful tools for
knowing exactly how many records were processed and whether any were
processed at all.

In the preceding example, if you change the WHERE clause to where
eName=’TEST’; the output changes, as shown here:

SQL> begin
2 update emp
3 set sal=sal*1
4 where eName=’TEST’;
5
6 DBMS_OUTPUT.put_line(‘Processed:’||sql%rowcount);
7
8 if sql%FOUND then
9 DBMS_OUTPUT.put_line(‘Found=true’);
10 else
11 DBMS_OUTPUT.put_line(‘Found=false’);
12 end if;
13 end;
14 /
Processed:0
Found=false
PL/SQL procedure successfully completed.
SQL>

Because there is no employee with the specified name, no row was updated.
You don’t need to requery the table to find out how many records were

147Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 147

updated. This last point is especially critical for batch processing. By taking
advantage of SQL%ROWCOUNT, you can reduce the amount of code you have
to write to detect whether your DML operations were successful.

As usual, there are some caveats in using implicit cursor variables:

� %ISOPEN is always false because implicit cursors are opened as needed
and closed immediately after the statement is finished. Never use
%ISOPEN with implicit cursors.

� Both %FOUND and %NOTFOUND are false before any statement is exe-
cuted. Using them in your code in this way is a waste of time and space.

� Any DDL or transaction control commands (commit or rollback) will
clear implicit cursor variables. You can check the value of your cursor
variables only prior to doing a commit or rollback.

Updating Records Fetched from Cursors
As you loop through a set of records, you’ll frequently want to update each of
the records. For example, you might want to loop through all employees and
adjust their salaries or loop through purchase orders and update their statuses.

You can update records in a few different ways. When you need to use more
complex logic, be sure to evaluate whether to lock the records so that other
actions don’t interfere with your update. The following sections explain the
different methods and considerations in more detail.

Using a simple UPDATE statement
Often, you can update records with a simple SQL UPDATE statement like

update emp
set salary = salary * 1.1
where deptNo = 10;

This statement would add 10 percent to everyone’s salary in department 10.

However, sometimes you need to use more complex logic.

Updating with logical operators
When you need to look at each record individually and decide what to do
with it, logical operators come into play. You usually don’t want to simply

148 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 148

update all the records the same way. One way to do this is by embedding a
simple UPDATE statement in your code. For example, the following code gives
a raise to everyone with a salary below $5,000:

declare
cursor c_empInDept is
select * from emp;

begin
for r_emp in c_empInDept loop
if r_emp.sal < 5000 then
update emp
set sal = sal * 1.1
where empNo = r_emp.empNo;

end if;
end loop;

end;

But this isn’t very safe code. While your routine is running, someone else
might be updating employee salaries. You might give a raise to someone
whose salary, in the last split second, has already been raised above $5,000.

To solve this problem, you need to lock all the records while you’re working
on them. This is done using a SELECT FOR UPDATE command, as shown in
Listing 6-14. You can find out more about locking, sessions, and transaction
control in Chapter 12.

Listing 6-14: Using the SELECT FOR UPDATE Command

declare
cursor c_empInDept is
select * from emp
for update of sal; ➞4

begin
for r_emp in c_empInDept loop
if r_emp.sal < 5000 then
update emp
set sal = sal * 1.1
where current of c_empInDept; ➞10

end if;
end loop;

end;

Here are the details about lines 4 and 10:

➞4 Notice that the code uses FOR UPDATE OF SAL;. This lock means
that others can’t delete records or modify the salary column but are
allowed to modify other columns. You need to lock not only the
column that you’re modifying, but also any other column that might
determine what record you will process. If you don’t specify any
column, the clause FOR UPDATE locks the entire record.

149Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 149

➞10 Notice that the WHERE clause was changed to use where current
of c_empInDept. This code updates the exact record that the
cursor is referencing by using the internal Oracle record identifier
(rowid). It will execute very fast.

If you lock the records, no one else will be allowed to modify the records until
your cursor closes. This can be a problem. If your routine takes a long time to
execute, you can affect other users of your system.

Whether to use SELECT FOR UPDATE or just UPDATE for the current record
by using the primary key is a difficult decision to make. You need to balance
the safety of SELECT FOR UPDATE against the impact that it might have on
other parts of the system.

Taking a Shortcut with
CURSOR FOR Loops

The technique of looping through all the records in a cursor is so common
that PL/SQL has a nifty shortcut, the CURSOR FOR loop. This is an alternative
to the OPEN/FETCH/CLOSE sequence introduced in “Looping through multiple
records,” earlier in this chapter.

Of course, if there’s a shortcut, you might wonder why anyone still uses
OPEN/FETCH/CLOSE at all. And the reason is an important one: There are
some exception-handling issues to consider before choosing to use a CURSOR
FOR loop implementation. If something goes wrong inside the CURSOR FOR
loop, Oracle closes the cursor, which can affect your procedural logic.

The following sections introduce how this shortcut works and help you
decide when to take the shortcut and when the long way is better.

Comparing CURSOR FOR loops to
cursors with the LOOP command
As we explain in the “Looping through multiple records” section earlier in
this chapter, cursors help process multiple records at once in a block of
code. For example, if you need to access all the records in department 10,
increase the salary of all employees in department 10 by 50 percent, and
print out a report with the old and new salary values, the code would look
something like Listing 6-15.

150 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 150

Listing 6-15: Looping through a Cursor by Using the LOOP Command

declare
cursor c_emp (ci_deptNo NUMBER) is
select *
from emp
where deptNo = ci_deptNo;

r_emp c_emp%ROWTYPE;
begin

open c_emp(10);
loop

fetch c_emp into r_emp;
exit when c_emp%NOTFOUND;
update emp
set sal=sal*1.5
where empNo=r_emp.empNo;
DBMS_OUTPUT.put_line(‘Emp ‘||r_emp.eName||
‘ - salary change:’||r_emp.sal||
‘->’||r_emp.sal*1.5);

end loop;
close c_emp;

end;

Although Listing 6-15 will work, if you want to process all the rows in the
query, you don’t need to bother with the full OPEN/FETCH/EXIT/CLOSE
syntax. You can make your code more compact by telling Oracle to manage a
CURSOR FOR loop based on the cursor, as in Listing 6-16.

Listing 6-16: Looping through a Cursor by Using a CURSOR FOR Loop

declare
cursor c_emp (ci_deptNo NUMBER) is
select *
from emp
where deptNo = ci_deptNo;

begin
for r_emp in c_emp(10) loop

update emp
set sal=sal*1.5
where empNo = r_emp.empNo;
DBMS_OUTPUT.put_line(‘Emp ‘|| r_emp.eName||
‘ - salary change:’||r_emp.sal||’-
‘- >’||r_emp.sal*1.5);

end loop;
end;

The method shown in Listing 6-16 is much more convenient than Listing 6-15.
The code is much shorter. Several tasks you previously needed to do by hand
are handled automatically:

151Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 151

� You don’t have to declare the r_emp record variable. In a CURSOR FOR
loop, the record variable is automatically declared when it is used in the
FOR statement, and it automatically has the same row type as the cursor.

� There is no EXIT statement. The program automatically exits the loop
when there are no more records to process.

� There are no OPEN or CLOSE statements. The CURSOR FOR loop auto-
matically opens the cursor and closes it when there are no more records
to fetch.

� If a SQL query returns no records, the code inside the loop won’t be exe-
cuted at all.

� The record that holds data retrieved by the cursor exists only inside the
loop and provides temporary storage of each fetched record. Individual
columns can be referenced as variable.column_name.

Listing 6-16 is much easier to read and understand, but it will spin through
the dataset and process all its records just the same as the longer version.

When do CURSOR FOR loops
simplify exception handling?
By using CURSOR FOR loops, you don’t need to worry about an accumulation
of open cursors that could eventually reach the maximum number of cursors
allowed for the database. For example, if you were looping through employ-
ees doing payroll and encountered an error, you would have to stop process-
ing your payroll and gracefully recover. The following example illustrates the
simplification of code made possible by the CURSOR FOR loop’s automatic
housekeeping:

declare
cursor c_emp is ...

begin
for r_emp in c_emp loop
<...something that could fail ...>

end loop;
exception

when others then
/* The cursor is already closed – don’t do
anything*/

...
end;

If you write the same example with OPEN/FETCH/CLOSE, you need to know
whether failure can occur before the cursor is closed.

152 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 152

declare
cursor c_emp is ...
r_emp c_emp%ROWTYPE;

begin
open c1;
loop

fetch c_emp into r_emp;
exit when c_emp%NOTFOUND;
<... .something that could fail #1..>

end loop;
close c_emp;

<... .something that could fail #2..>
exception

when others then
/* Cursor is opened at #1 and closed at #2 */
if c_emp%ISOPEN is true
then

close c_emp; -- close the cursor
end if;
raise;

end;

If failure occurs during loop processing (in the first example), you must close
the cursor in the exception block. But you need to check %ISOPEN before-
hand, because the failure could have occurred in processing the second
example code block, and the cursor would already be closed.

Make it a habit to place such exception-handling logic into any code that uses
explicit cursors (not CURSOR FOR loops). Otherwise, you risk intermittent
and unpredictable database collapse.

When should you use a CURSOR FOR loop instead of a looping through the
cursor by using a LOOP command? The answer is pretty simple: Always start by
using a CURSOR FOR loop. If you then end up needing very precise control that
prevents you from using a CURSOR FOR loop, change your code to the tradi-
tional technique. Only rarely will you need to switch to the traditional way.

When CURSOR FOR loops
make your life harder
There are times when you want to use the standard OPEN/FETCH/CLOSE
syntax in a loop. In a CURSOR FOR loop, if you want to know the last record
retrieved, you have to do some extra work. In the basic OPEN/FETCH/CLOSE
sequence, the last fetched value before failure is sitting in the record variable,
but that isn’t the case in a CURSOR FOR loop. In a CURSOR FOR loop, the
record variable is null after the cursor closes.

153Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 153

To solve this problem, you could store part or all of the current record in a
variable visible outside the CURSOR FOR loop, and then you could perform
whatever processing you need. If a failure occurs, you can use that record in
the exception handler, as shown in Listing 6-17.

Listing 6-17: Adding an Exception Handler to a CURSOR FOR Loop

declare
cursor c_emp (ci_deptNo NUMBER) is
select empNo, deptNo, empName
from emp
where deptNo = ci_deptNo
order by empNo; --helps ID failure point ➞6

v_empNo NUMBER;
begin

for r_emp in c_emp(10) loop
v_empNo := r_emp.empNo; --record identifier ➞10
<... .something that could fail #1..>

end loop;
exception

when others then
raise_application_error
(-20999,’Update failed on the emp#’||v_empNo||
‘ with error :’||sqlerrm); ➞17

end;

Here’s how Listing 6-17 works:

➞10 Saves EMPNO into a variable (v_empNo) that will still exist after the
cursor is closed.

154 Part II: Getting Started with PL/SQL

A shortcut in a shortcut
If you want to push the envelope to the extreme,
you can rewrite Listing 6-13 without explicitly
declaring a CURSOR FOR loop at all. Although
we don’t recommend this strategy, because of

the decreased readability of the code and lack
of reusability of a cursor, you can still do it, as
shown here:

begin
for r_emp in (select *

from emp
where deptNo = 10) loop

<... do something ...>
end loop;

end;

11_599577 ch06.qxp 5/1/06 12:12 PM Page 154

➞17 References v_empNo in the error handler. You know that all
records with empNo < V_empNo were processed successfully
because of the order by (line 6) in the query.

Knowing what record is processing
Cursor variables were introduced earlier in the section “Accessing Status Info
Using Cursor Variables.” Although the %ISOPEN, %FOUND, %NOTFOUND vari-
ables aren’t useful at all in CURSOR FOR loops, you can use %ROWCOUNT to
detect what record you are processing at a given point, as shown in the fol-
lowing example:

declare
v_recordCount_nr NUMBER; ➞2
cursor c1 is ...

begin
for r in c1 loop

v_recordCount_nr:=c1%rowcount; ➞6
<... do something ...>

end loop;
DBMS_OUTPUT.put_line(‘Rows processed:’||

v_recordCount_nr); ➞10
end;

Here are some additional details about this code:

➞2 Declares a variable that will hold the number of records processed.

➞6 Copies the number of records fetched into the variable.

➞10 References the number of records retrieved after the cursor is
closed.

Because you need to know the value of the cursor variable outside the loop,
you have to use an additional variable to store that value. If you don’t do this,
after the loop is closed you can’t answer the question “How many records were
processed?” Because the cursor is already closed, there is no way to access its
information. As usual, if you need something done, just do it yourself.

Referencing Functions in SQL
In SQL, you already know that you can retrieve columns as well as expres-
sions that reference those columns. What you may not know is that you can
also write your own functions that can then be referenced within the query.

You find out about writing functions in Chapter 4. If you haven’t read that
chapter yet, you might want to read it now.

155Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 155

Start with a simple example of creating a Departments/Employees report
sorted by department, with a comma-separated list of employees in each
department. Your report should look like this:

Department Employees

Accounting Smith, Jones

Finance Benson, Marks, Carson

Marketing Johnson, Chu

There are actually two tasks required here: preparing the comma-separated
list and displaying the report.

1. To prepare the comma-separated list, create the following PL/SQL
function, named f_get_Emps:

create or replace function f_getEmps_tx
(i_deptNo NUMBER)

return VARCHAR2
is

cursor c_emp is
select eName
from emp
where deptNo = i_deptNo;

v_out_tx VARCHAR2(4000);
begin

for r_emp in c_emp loop
if v_out_tx is null
then

v_out_tx:=r_emp.eName;
elsif length(v_out_tx)+

length(r_emp.eName)>3999
then

156 Part II: Getting Started with PL/SQL

Why some cursor variables work, and some don’t
%ISOPEN, %FOUND, %NOTFOUND variables
aren’t useful at all in CURSOR FOR loops:

� The CURSOR FOR loop is always closed
before and after the loop and open inside
the loop. There is no reason to ever use
%ISOPEN.

� Inside the loop, records are always found
(or else the program would never go inside
the loop). So %FOUND is always true inside

the loop. Outside the loop, %FOUND, %NOT
FOUND would return an error.

%ROWCOUNT is useful:

� %ROWCOUNT can be referenced inside the
loop in CURSOR FOR loops or if you used
an explicit cursor to define the loop. You
can’t use it with implicit cursors.

� %ROWCOUNT can’t be used before or after
the loop. It will return an error.

11_599577 ch06.qxp 5/1/06 12:12 PM Page 156

null;
else

v_out_tx:=v_out_tx||’, ‘||r_emp.eName;
end if;

end loop;
return v_out_tx;

end;

2. Display the report:

select deptNo, dname, f_getEmps_tx(deptNo) emps
from dept
order by dname;

That’s all you need to do. You can use PL/SQL functions inside SQL code,
which gives you the power to go beyond pure SQL functionality. You can use
“industrial strength” procedural logic to work with requirements that you
couldn’t implement otherwise.

Important facts to remember
Everything always comes with a price, and using functions in SQL is no excep-
tion. There are a number of drawbacks and restrictions to using these functions.

Datatypes
PL/SQL datatypes don’t always correspond directly to SQL datatypes (more
details about PL/SQL datatypes can be found in Chapters 10 and 11):

� BOOLEAN and REF CURSOR types do not exist in SQL at all.

� VARCHAR2 can only go up to 4,000 in SQL rather than 32,000 in PL/SQL
(note this limit in the preceding example).

Read/write restrictions
The PL/SQL reference manual includes some fairly strict rules:

� When called from a SELECT statement, the function cannot modify any
data (no DML except SELECT).

� When called from an INSERT, UPDATE, or DELETE statement, the func-
tion cannot query or modify any data.

� When called from a SELECT, INSERT, UPDATE, or DELETE statement, the
function cannot execute SQL transaction control statements (such as
COMMIT), session control statements (such as SET ROLE), or system
control statements (such as ALTER SYSTEM). Also, it cannot execute
DDL statements (such as CREATE) because they are followed by an
implicit COMMIT.

157Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 157

The reason for these rules is simple. Oracle can’t be sure that modifying data,
the session, the system, or object structure doesn’t have any impact on the
data you’re querying or even on objects you’re processing. If such activity
isn’t blocked, a logical loop or conflict that can’t be resolved might result.

Think about what should happen if the function in the next example is called
in SQL. This function updates the salary of the specified employee and tells
you whether the update was successful:

create or replace
function f_giveRaise_tx (i_empNo NUMBER, i_pcnt NUMBER)
return VARCHAR2 is
begin

update emp
set sal=sal*(i_pcnt/100)+sal
where empNo = i_empNo;

return ‘OK’;
exception

when others then
return ‘Error:’||substr(sqlerrm,1,256);

end f_giveRaise_tx;

Instead of the update confirmation, the result of the query is an Oracle error,
which is caught by the exception handler of the function:

SQL> select f_giveRaise_tx(7369,100)
2 from dual;

F_GIVERAISE_TX(7369,100)
--
Error:ORA-14551: cannot perform a DML operation inside a

query
SQL>

Oops! Oracle just told you that you cannot make that UPDATE.

Performance impact
How does the Oracle know what exactly is happening “under the hood” of the
function that you placed inside the query? How can it determine what impact
that function could have on overall execution? It can’t.

In terms of performance, using functions in SQL is risky. With functions in
SQL, the whole idea of SQL optimization gains another dimension; namely,
decreasing the impact of function calls.

There are some guidelines you can follow. The next example shows a display
function for an employee that returns name and job. It also includes a view
that uses this display function for managers:

158 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 158

create or replace
function f_emp_dsp (i_empNo NUMBER)
return VARCHAR2 is

v_out_tx VARCHAR2 (256);
begin

DBMS_OUTPUT.put_line(‘Inside of F_EMP_DSP’);
select initcap(eName)||’: ‘||initcap(job)
into v_out_tx
from emp
where empNo = i_empNo;

return v_out_tx;
end f_emp_dsp;
/
create or replace view v_emp as
select empNo, eName, mgr, f_emp_dsp(mgr) mgr_name, deptNo
from emp;
/

When you query the view, it may run much more slowly than a query that
accesses the EMP table directly. If performance is important (and performance
is always important), you need to be careful. Here are some guidelines:

Don’t ask for what you don’t need
If you only need EMPNO and ENAME, the following statement is inefficient:

select *
from v_emp;

Use this statement instead:

select empNo, eName
from v_emp;

Remember that one of the columns in the view v_emp is defined as a func-
tion. In the first case, that function will be executed for each record to be
processed. The asterisk (*) means that you are retrieving all columns listed
in the view including the column defined as a function. You do not need that
extra data, but it will still be unnecessarily calculated when the query is exe-
cuted, making your query run more slowly than necessary.

Don’t ask for what you already have
Function f_emp_dsp will return exactly the same value for the same
employee each time it is called. This behavior is called “deterministic.”
Knowing about this behavior can help Oracle avoid redundant function calls.
If a deterministic function was called previously with the same arguments,
the optimizer can elect to use the previous result. Thus, the function could
be modified as follows:

159Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 159

create or replace function f_emp_dsp (in_empNo NUMBER)
return VARCHAR2
DETERMINISTIC is
...

Declaring a function DETERMINISTIC is only a hint, and there is no guaran-
tee that the optimizer will use it. However, it can be very handy.

Don’t run the function all the time when you only need it some of the time
Assume that you need to take some action for every record in department 10,
which includes using the display function for employees. You could start by
writing your query this way:

declare
cursor c_emp is
select *
from v_emp;

begin
for r_emp in c_emp loop

if r_emp.deptNo = 10 then
...

end if;
end loop;

end;

You should assume that any number of calls greater than the number of
employees in department 10 is a waste of resources. The following query
works exactly as expected:

declare
cursor c_emp is
select *
from v_emp
where deptNo=10;

begin
for r_emp in c_emp loop
...
end if;

end;

Function calls can be expensive from a system resource perspective. Do your
best to ensure that the calls you use are efficient and do only what you want
them to do.

Getting good performance with functions
Oracle can’t do everything for you. For example, it can’t guess exactly what
you want from your system. The human mind can always outsmart a com-
puter, but the trick is not to outsmart yourself.

160 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 160

Sticking to the following rules will make your life and your database perfor-
mance significantly better.

� As you write any function, ask yourself, “Will it be used in SQL or
not?” If so, verify that SQL works with the datatypes you’re passing in
and out.

� Verify that you are not performing illegal reads/writes. For how to
cheat if needed, see Chapter 12, which covers transaction control.

� Think about performance at design time, not later, when users start to
complain about it. Write your code with its future use in mind.
Sometimes saving a keystroke or two in implementation might seem like
a good idea, but it can result in hours of necessary tuning when your
system is in production.

161Chapter 6: PL/SQL and SQL Working Together

11_599577 ch06.qxp 5/1/06 12:12 PM Page 161

162 Part II: Getting Started with PL/SQL

11_599577 ch06.qxp 5/1/06 12:12 PM Page 162

Part III
Standards and

Structures

12_599577 pt03.qxp 5/1/06 12:13 PM Page 163

In this part . . .

Part III provides guidance about how to structure the
code you write and useful standards for naming and

coding.

Chapter 7 discusses the many options of where to place
PL/SQL code within a system and provides information
to help you make the right decision.

Chapters 8 and 9 cover the importance of establishing
standards for both naming and coding and list standards
that we use in our own work to assist you in creating your
own.

12_599577 pt03.qxp 5/1/06 12:13 PM Page 164

Chapter 7

Putting Your Code
in the Right Place

In This Chapter
� Placing code in the database

� Using triggers

� Using application logic

� Placing code in the middle tier

Writing good code that runs efficiently isn’t enough to guarantee the
success of a project. Deciding where to put the code is just as impor-

tant as writing it. Code can be written in lots of different places within a
system, but each of these places has pro and cons. Frequently, depending
upon what the code needs to do, you can make a clear, correct decision
about where the code should reside. At other times, you have a variety of
acceptable alternatives for placing the code.

Deciding how and where to place code has been a hotly debated topic in the
application development world. In client/server development, you had to
decide what logic belonged in the database and what logic belonged within
the user interface. Since the advent of Web-based systems that run code on
an application server, code can reside in even more places. With all these
options, the question remains: Which code should be placed where?

This chapter attempts to give you the answers by taking a look at the pros
and cons of your options. First, you find out about storing code in the data-
base. Then we explain why implementing logic in the middle tier should only
be done very carefully.

Putting Code in the Database
The most common code container in the database is a stored procedure.
Stored procedures refer to functions and procedures stored in isolation or

13_599577 ch07.qxp 5/1/06 12:13 PM Page 165

grouped into packages. Opting for packages has a number of benefits, including
the ability to store large functions or procedures and better code maintenance.
In other cases, you might want to store code as a trigger or an INSTEAD OF
trigger view. The following sections take a look at all these options.

Managing code
Before modern PL/SQL editors were developed, searching the database and
retrieving code from the database for editing were inconvenient, but these
are now simple tasks. If you’re having difficulty finding a specific piece of
code, most IDEs have efficient search capabilities that allow you to search
all the code stored in the database and retrieve the desired section of code.

Some organizations maintain their source code in documents rather than in
the database. This is particularly true of large organizations using formal con-
figuration management architectures where code must be checked in and out
before it can be worked on. However, from the developer’s perspective, look-
ing through code in the database is easier rather than trying to dig through
files maintained by configuration management software. However, this won’t
be possible if the code in the database is obfuscated, so that it isn’t human-
readable. This is a measure that may be used in some security-conscious
sites and by application packagers.

The most popular IDEs used to search and maintain PL/SQL code are Toad
and SQL*Navigator, both developed by Quest Software. For many years,
Oracle seemed content not to compete in this market. However, Oracle has
recently released SQL Developer (formerly called Raptor and also mentioned
in Chapter 2). This tool is a fully featured PL/SQL code editor that might
easily dominate the market in the future.

Packaging code in the database
Packages (as we discuss in Chapter 3) are the most common place to put
code in the database. There are some differences between placing code in a
package and making it an isolated routine beyond its logical organization; we
discuss these differences here.

From a code maintenance perspective, putting database code into packages
is always better. This allows you to logically group and manage the code
much more easily, assuming that you’re using an IDE that allows you to view
a list of the functions and procedures within a package and quickly navigate
to them. However, putting all your functions and procedures into packages
has a few disadvantages.

166 Part III: Standards and Structures

13_599577 ch07.qxp 5/1/06 12:13 PM Page 166

Code scope and visibility in packages
If you place a function or procedure inside a package, it isn’t necessarily
accessible from outside the package. It will be accessible outside the package
only if it is declared in the package specification. Even within the package, it is
accessible only to other functions and procedures that are declared after it.

Similarly, within packages, you can declare variables or any objects in the
package that either are visible only within the package or can be referenced
from outside the package.

Listing 7-1 shows a package to handle login functions. Some functions are
accessible only within the package; others can be seen outside of the package.

Listing 7-1: The Login Function Package

create or replace package pkg_emp is
gv_current_empNo NUMBER; ➞2

procedure p_setCurrentEmpNo (i_empNo NUMBER);
function f_getCurrentEmpNo return NUMBER;

procedure p_giveRaise (i_pcnt NUMBER);
end;

create or replace package body pkg_emp is
gv_LOGUSER_tx VARCHAR2(256); ➞11

procedure p_validateUser is ➞13
begin

if gv_LOGUSER_tx is null then
raise_application_error

(-20999,’no valid user!’);
else

if gv_LOGUSER_tx not like ‘SCOTT%’ then
raise_application_error

(-20999,’not enough privileges!’);
end if;

end if;
end;

procedure p_setCurrentEmpNo (i_empno number)is
begin

gv_LOGUSER_tx:=user||’|’||
sys_context(‘userenv’,’ip_address’);

gv_current_empno:=i_empNo;
end;

function f_getCurrentEmpno return NUMBER is
begin

return gv_current_empNo;

(continued)

167Chapter 7: Putting Your Code in the Right Place

13_599577 ch07.qxp 5/1/06 12:13 PM Page 167

Listing 7-1 (continued)

end;

procedure p_giveRaise (i_pcnt NUMBER) is
begin

p_validateUser;

update emp
set sal=sal*(i_pcnt/100)+sal
where empno = f_getCurrentEmpno;

end;
end;

The following are additional details about Listing 7-1:

➞2 The variable is declared in the package specification. It is visible
both inside and outside the package.

➞11 The variable is declared in the package body. It will be visible only
for procedures/functions after the declaration.

➞13 The procedure is declared in the package body. It won’t be visible
from outside of the package.

Package values are session-specific
Values that are set in objects declared in the package specification are session-
specific. This means that until you disconnect your session from Oracle, these
values will persist. Traditional database development often uses variables
declared in the package specification to act as globals for application code.
This approach is valid for client/server development. When Web develop-
ment began, a problem arose. With a Web application, you don’t usually
maintain a single persistent connection with the database throughout the
entire user session.

Every time users interact with the database, they typically are grabbing an
available connection from a persistent pool of connections to perform the
database operations. This means that session variables that are set in one
operation by a user might not return the same value if examined at a later
point in time.

If you want to have a global variable that remains valid throughout a user ses-
sion, you can’t use a package specification variable. What are the alternatives?
We discuss several in the following sections.

Storing global values in database tables
If you store the value in a table in the database, when a user begins a process-
ing session, a unique session number is passed from the database. You can
then store the global value in a table in the database by using that session

168 Part III: Standards and Structures

13_599577 ch07.qxp 5/1/06 12:13 PM Page 168

identifier. Each time the user makes a system request, this session identifier is
passed back to the database. When the user session is terminated, the data-
base must be informed so that the session-specific global values are deleted.

You might also want to create a routine that periodically deletes any old
global values in case sessions were abnormally terminated. This happens fre-
quently in a Web environment.

Pros: Storing global values in the database is fast, easily organized by using
packages, and has very little overhead.

Cons: The only problem with this approach is that it isn’t transparent to the
application developer who needs to know that an ID will be passed to him or
her. Every time a reconnection to the database is made, this ID must be
passed back to the database.

Storing global variables in the middle tier
You can store a copy of all the global variables in the middle tier in some sort
of generic structure, in a vector array, or as individual values. To use this
approach, you need to minimize the number of round trips between the data-
base and the application server. If you’re using a PL/SQL-centric approach,
this is difficult because a PL/SQL routine can’t access a value stored on the
application server. The global values must be passed to the database before
they are referenced, using one of the following methods:

� You can pass all the global variables to the database when the session
is initiated, which can potentially adversely affect performance if the
number is too many.

� Or you can pass the variables as needed, depending upon the
database action required. This can be a very complex piece of logic
to support. Oracle’s Application Development Framework - Business
Components (ADF BC) will handle all this complexity quite efficiently. If
you’re using ADF BC, you can safely use a modest number of package
variable references in your code with relatively little performance
impact. This method won’t be as efficient as storing the code in the
database, but it might be adequate for your needs.

If you’re placing all the code in the middle tier anyway, storing the global ref-
erences in the same place makes sense. If the code is divided between the
database and the middle tier and you need to have a consistent copy of the
global variables, you should also use the application server as the primary
storage mechanism.

Pros: Placing global variables in the middle tier makes the global variable ref-
erences visible from either the middle tier or the database. The middle tier
can reference the database, but not vice versa.

169Chapter 7: Putting Your Code in the Right Place

13_599577 ch07.qxp 5/1/06 12:13 PM Page 169

Cons: This storage option causes minimal performance impact but the main
drawback is complexity. If the code isn’t completely stored in the middle
tier, you will need to maintain and synchronize multiple copies of the global
variables.

Compiling code in a database package
One of the disadvantages of using a package is that you can’t compile a por-
tion of a package. Fortunately, you can compile the specification independent
of the package body. If you’re making changes only to the package body, you
aren’t required to compile the package specification. Keep in mind the follow-
ing details about package compilation:

� When recompiling a package specification, any code referencing this
package specification must also be recompiled. If you don’t recompile,
Oracle invalidates the code containing the reference the next time that
code is run, and you receive an error message regarding the invalid
existing state of packages. Typically, after encountering this initial prob-
lem, Oracle automatically recompiles the code (or package body con-
taining the reference), so that the next time the code is run, you don’t
get an error message. In a development or test environment, this situa-
tion is a minor annoyance. However, the compilation of a package speci-
fication in a production environment might potentially inconvenience
any user logged into the system.

� Another effect of compiling a package specification is that global values
stored in the package specification by any open sessions will be lost.

Because compiling a specification leads to these problems, you need to be care-
ful about recompiling packages in a production environment. The good news is
that recompiling a package body doesn’t affect the package specification.

To illustrate this point, here is a brief example. Keep in mind that the invali-
dation of code during compilation cascades, meaning that if stored proce-
dure A references stored procedure B which, in turn, references stored
procedure C, and stored procedure C is recompiled, both A and B will be
invalid.

If procedure A references procedure B and simultaneously B also references
A, how can you ever get both compiled at the same time? The answer is that
you can’t. Oracle will detect the deadlock and nothing will compile.

If you have two packages (P1 and P2) and the body of P2 references some-
thing in the specification of P1, recompiling the specification of P1 will invali-
date only the body of P2. Therefore, any code referencing the specification of
P2 won’t be invalidated, as shown in Listing 7-2, in which we create two pack-
ages where the package body of PKG_A references PKG_B.

170 Part III: Standards and Structures

13_599577 ch07.qxp 5/1/06 12:13 PM Page 170

Listing 7-2: Referencing Package Specifications

create or replace package pkg_a is
v_a NUMBER;
function a1 return NUMBER;

end;
create or replace package body pkg_a is

function a1 return NUMBER is
begin

return 0;
end;

end;

create or replace package pkg_b is
function b1 return NUMBER;

end;
create or replace package body pkg_b is

function b1 return NUMBER is
begin

return pkg_a.a1+1;
end;

end;

Now recompile the package spec of PKG_A and see what happens:

SQL> create or replace package pkg_a is
2 v_a number:=0;
3 function a1 return NUMBER;
4 end;
5 /

Package created.

SQL> select object_name||’ ‘||object_type
2 from user_objects
3 where status = ‘INVALID’;

OBJECT_NAME||’’||OBJECT_TYPE
--
PKG_A PACKAGE BODY
PKG_B PACKAGE BODY
SQL>

The first time you access package elements, the package bodies would be
recompiled:

SQL> select pkg_a.a1, pkg_b.b1 from dual;

A1 B1
---------- ----------

0 1

SQL> select object_name||’ ‘||object_type

171Chapter 7: Putting Your Code in the Right Place

13_599577 ch07.qxp 5/1/06 12:13 PM Page 171

2 from user_objects
3 where status = ‘INVALID’;

no rows selected

SQL>

Controlling access to packages
When using packages to store code in the database, you need to understand
how to control access to that code. You can do this in one of two ways: a
simple command or a wrapper package.

To grant a user rights to access a particular package, you need to explicitly
grant those rights by using the following command:

grant execute on package_name to user

Note that you can’t grant rights to execute a portion of a package. Rights
must be granted to an entire package.

To revoke grants from a user, use the following command:

revoke execute on package_name from user

The following code shows some examples of granting and revoking privileges:

SQL> grant execute on pkg_emp to hr;
Grant succeeded.
SQL> revoke execute on pkg_emp from hr;
Revoke succeeded.
SQL>

You can limit access to objects in package specification by creating wrapper
packages by using the capability of procedures in packages to call proce-
dures in other packages. In a complex system, you might have a few large
code modules (A, B, and C). Within module A, there might be many different
packages. However, there are relatively few functions and procedures in pack-
age A that need to be referenced outside of package A. Instead of requiring
module B developers to completely understand the structure of module A,
you can create a wrapper package to expose only the routines needed to be
public to module B. It will be necessary to look only in one wrapper package
in module A to access the desired code, as shown in Listing 7-3.

172 Part III: Standards and Structures

13_599577 ch07.qxp 5/1/06 12:13 PM Page 172

Listing 7-3: Using a Wrapper Package

create or replace package pkg_clientPrint is
procedure p_print (i_deptNo NUMBER);
...

end;

create or replace package body pkg_clientPrint is
procedure p_print (i_deptNo NUMBER) is
begin

pkg_empPrint_pkg.p_printempfile ➞9
(i_deptNo,’list.txt’,’IO’);

end;
...

end;

➞9 In the original package PKG_EMPPRINT, the user can specify the
output filename and directory. But you want to force the client to
use the precise directory and file. That’s why you create a special
wrapper package with hard-coded values passed to the original
P_PRINTEMPFILE. Now if you make only the PKG_CLIENTPRINT
package accessible, you can be sure of the output.

If you don’t want a user to have access to a particular function or procedure,
you can create a separate wrapper package that includes only the portions of
the package that the user is allowed to access.

Placing packages for optimal performance
Placing code in packages has mixed impacts on performance. The first time a
package is referenced, the entire package is brought into memory. For very
large packages (20,000 lines of code or more), this might mean a delay of a full
second or more the first time that the package is referenced. When the pack-
age is in memory, other users can reference it very quickly. Oracle doesn’t
reload a new copy of the package for each user on a system.

However, there is only so much room in memory for storing PL/SQL code. If
this memory fills up, Oracle is forced to swap out any code that hasn’t been
used recently. The next time that this code is referenced, it must be reloaded
into memory, potentially swapping out other code. Therefore, if you have a
large amount of PL/SQL in your system and not a lot of memory allocated for
its storage, the performance of the system might rapidly degrade when many
users are accessing it.

Sometimes, you need to restructure which procedures reside in which pack-
age in order to minimize wasted space in memory. This is particularly true in
systems with very large packages, where only a very small number of these
packages is being used. Say Package 1 (P1) contains two procedures: proce-
dures A and B. Procedure A is very small and is used often. Procedure B is
very large but runs only once each month. Each time procedure A is

173Chapter 7: Putting Your Code in the Right Place

13_599577 ch07.qxp 5/1/06 12:13 PM Page 173

accessed, the entire package including procedure B is loaded into memory
where it consumes space for no good reason.

When functions and procedures are executed, they’re individually loaded
into memory. This results in much more efficient memory management.
However, if you have several dozen functions and procedures that are fre-
quently used, placing them into a package and loading this package one time
is more efficient than loading the relevant function or procedure into memory
each time it is referenced.

Avoiding size limitations with packages
Here’s another important consideration when you’re deciding whether to
place code into packages: Functions and procedures can be much bigger
when placed into packages. An individual function or procedure in Oracle is
limited to 32,000 characters (including spaces). This might sound like a lot,
but in large routines, this can be used up very quickly.

Packages have no such limitation. You can create a package that is as large as
you want. For very large routines, it isn’t uncommon to have a package that
has nothing in it other than a single function or procedure as a workaround
to the size limitation of unpackaged functions and procedures in Oracle.

Placing triggers on tables
Placing triggers on tables is a very common practice that causes more
headaches for developers than any other technique. As a result, in many
organizations only DBAs are allowed to add triggers to tables.

This section can’t present a full treatment of table triggers, but we show you
a few useful trigger examples.

For the last 20 years, table triggers have been used to enforce data validation
business rules completely independent from the application layer. Conditions
specified in the triggers will still be checked, even if they aren’t enforced in
the user interface. Therefore, you’re protected from corrupted data.

Table triggers can be of two types: row-level or statement-level.

Statement-level triggers
Use statement-level triggers when you need to check business rules that are
not row dependent. For example, say you have a rule stating that nobody can
delete or create new employees over a weekend. This rule concerns the
behavior of the whole EMPLOYEE table. That’s why you could implement it as
a statement-level trigger, as shown in Listing 7-4.

174 Part III: Standards and Structures

13_599577 ch07.qxp 5/1/06 12:13 PM Page 174

Listing 7-4: A Statement-Level Trigger

create or replace trigger emp_bid
before insert or delete ➞2
on emp
referencing new as new old as old
begin

if to_char(sysdate,’Dy’) in (‘Sat’,’Sun’) then
raise_application_error
(-20999,’No create/delete employees on weekend!’);

end if;
end;

➞2 By default, triggers are statement-level so you don’t need to spec-
ify the trigger type.

Row-level triggers
If you’re concerned about the data in each row, you need to use row-level
triggers. Assume that you have the following rule: A manager may not receive
a commission that exceeds his or her salary. This rule is about the data in
each row, so it should be implemented as row-level trigger as in Listing 7-5.

Listing 7-5: Row-Level Trigger

create or replace trigger emp_biu
before insert or update
on emp
referencing new as new old as old
for each row ➞4
begin

if :new.job = ‘MANAGER’ ➞6
and nvl(:new.sal,0)<nvl(:new.comm,0) then

raise_application_error (-20999,’Managers should
not have commissions higher then salary!’);

end if;
end;

The following are some additional details about Listing 7-3:

➞4 Here you explicitly indicate that you want a row-level trigger.

➞6 The major advantage of row-level triggers is that you can use
:OLD and :NEW prefixes on each column of the table to reference
the original and modified values.

Not all business rules are so easy to implement because there are restrictions
on what you can and cannot do in triggers. Assume that you need to check
the following rule: The commissions of any employee may not exceed the
salary of his/her manager. The problem here is that you don’t have the salary
of the employee’s manager in the same row. Therefore, you need to query a

175Chapter 7: Putting Your Code in the Right Place

13_599577 ch07.qxp 5/1/06 12:13 PM Page 175

different row in the same table inside of the trigger. But that is prohibited
because of the possibility of table mutation (you can’t query the same table
you’re updating). There are various ways to cheat and query the table you’re
placing the trigger on. One of these cheats is to declare the trigger as an
autonomous transaction, as we discuss in Chapter 12.

Controlling when a trigger fires
You may set triggers to execute either before or after the database event to
which they are tied. BEFORE EVENT triggers, as shown in the preceding
code, are for preventing the event from actually happening. AFTER EVENT
triggers are also very useful. For example, you could use them to create an
audit trail when sensitive data in a record was successfully changed. You
should not record that information in BEFORE EVENT triggers, because
before the database event, you don’t know whether your activity will suc-
ceed. (Foreign keys or check constraints could fail). An example of an AFTER
EVENT trigger is shown in Listing 7-6.

Listing 7-6: Using an AFTER EVENT Trigger

alter table emp add note_tx varchar2(2000)
/
create or replace trigger emp_aiu
after insert or update of comm, sal ➞4
on emp
referencing new as new old as old
for each row
begin

update emp
set note_tx = note_tx||chr(10)||

‘Update of ‘||:new.empNo
where empNo = :new.mgr; ➞12

end;

Here’s what you need to know about this code:

➞4 The trigger is fired after INSERT or UPDATE if the columns COMM
or SAL are modified. Therefore, you can be sure that the change
already occurred.

➞12 In AFTER EVENT row-level triggers you can use :NEW and :OLD
variables, but you can’t change the value of the NEW variable.
That’s why you need to fire an explicit UPDATE command. In the
current example, we are placing an update notification to the man-
ager of the current employee.

Because you’re updating the same table where you have the trigger, the
column you’re changing should be excluded from the list of columns that
cause the trigger to fire. Otherwise, you’ll create an infinite loop.

176 Part III: Standards and Structures

13_599577 ch07.qxp 5/1/06 12:13 PM Page 176

Never place validation rules in AFTER EVENT triggers. Any error raised in an
AFTER EVENT trigger causes all previous changes to roll back. This can be
an extremely time-consuming error to recover from.

Building INSTEAD OF trigger views
You probably already know that a view is nothing more than some stored SQL
that you can query as if it were a table. Only views that are single table or
“row ID preserved” allow INSERT UPDATE and DELETE commands. With an
INSTEAD OF trigger you can define the behavior of INSERT, UPDATE, and
DELETE for any view (no matter how complex).

The INSTEAD OF triggers override the default Oracle behavior of the
INSERT, UPDATE, or DELETE command and substitute your custom code.

Assume that you have a customer table and a separate address table in your
database. We don’t assert that this is a perfect data model, but it will help to
illustrate the value of INSTEAD OF trigger views. Tables 7-1 and 7-2 show the
columns and datatypes of the CUSTOMER and ADDRESS tables.

Table 7-1 A Sample CUSTOMER Table
CUSTOMER

customer_id NUMBER

lastName_tx VARCHAR2(20)

firstName_tx VARCHAR2(20)

Table 7-2 A Sample ADDRESS Table
ADDRESS

address_id NUMBER

street_tx VARCHAR(200)

stateProvince_cd VARCHAR2(10)

postal_cd VARCHAR2(10)

country_tx VARCHAR2(10)

customer_id NUMBER — foreign key to CUSTOMER

type_cd VARCHAR2(20)

177Chapter 7: Putting Your Code in the Right Place

13_599577 ch07.qxp 5/1/06 12:13 PM Page 177

178 Part III: Standards and Structures

In the system we describe here, each customer always has exactly one work
address and one home address. If you want to build a screen to enter cus-
tomer and address information, it would be convenient to have a single
CUSTOMER table upon which to base your application. With INSTEAD OF trig-
ger views, you can build a view that does exactly that, as shown in Listing 7-7.

Listing 7-7: Using an INSTEAD OF Trigger View

create or replace view v_customer
as
select c.customer_id,c.lastname_tx,c.firstname_tx,

w.address_id work_id,
w.street_tx work_street_tx,
w.stateprovince_cd work_state_cd,
w.postal_cd work_postal_cd,
w.country_tx work_country_tx,
h.address_id home_id,
h.street_tx home_street_tx,
h.stateprovince_cd home_state_cd,
h.postal_cd home_postal_cd,
h.country_tx home_country_tx

from customer c
left outer join address w

on c.customer_id = w.customer_id
and w.type_cd = ‘W’

left outer join address h
on c.customer_id = h.customer_id
and h.type_cd = ‘H’

/
create or replace trigger v_customer_id
instead of delete on v_customer
referencing new as new old as old
begin

delete from address
where customer_id=:old.customer_id;
delete from customer
where customer_id=:old.customer_id;

end;
/
create or replace trigger v_customer_ii
instead of insert on v_customer
referencing new as new old as old
declare

v_customer_id NUMBER;
begin

if :new.lastname_tx is not null
or :new.firstname_tx is not null then
-- create new customer if name is populated
insert into customer (customer_id,
lastname_tx, firstname_tx)

13_599577 ch07.qxp 5/1/06 12:13 PM Page 178

179Chapter 7: Putting Your Code in the Right Place

values (object_seq.nextval,
:new.lastname_tx, :new.firstname_tx)

returning customer_id into v_customer_id;
-- create work address if street is populated
if :new.work_street_tx is not null then
insert into address (address_id,street_tx,
stateprovince_cd, postal_cd,
country_tx, type_cd, customer_id)

values (object_seq.nextval,:new.work_street_tx,
:new.work_state_cd,:new.work_postal_cd,
:new.work_country_tx, ‘W’, v_customer_id);

end if;
-- create home address if street is populated
if :new.home_street_tx is not null then
insert into address (address_id,street_tx,
stateprovince_cd,postal_cd,
country_tx,type_cd,customer_id)

values (object_seq.nextval,:new.home_street_tx,
:new.home_state_cd,:new.home_postal_cd,
:new.home_country_tx, ‘H’, v_customer_id);

end if;
else

raise_application_error (-20999, ‘Cannot create
customer without name’);

end if;
end;
/
create or replace trigger v_customer_iu
instead of update on v_customer
referencing new as new old as old
begin
-- update customer
update customer
set lastname_tx = :new.lastname_tx,

firstname_tx = :new.firstname_tx
where customer_id = :old.customer_id;

-- insert/update/delete work addres
if :old.work_id is not null
and :new.work_street_tx is null then
delete from address
where address_id = :old.work_id;

elsif :old.work_id is null
and :new.work_street_tx is not null then
insert into address (address_id,street_tx,
stateprovince_cd, postal_cd,
country_tx, type_cd, customer_id)

values (object_seq.nextval,:new.work_street_tx,
:new.work_state_cd,:new.work_postal_cd,
:new.work_country_tx, ‘W’, :old.customer_id);

else
update address

(continued)

13_599577 ch07.qxp 5/1/06 12:13 PM Page 179

180 Part III: Standards and Structures

Listing 7-7 (continued)

set street_tx=:new.work_street_tx,
stateprovince_cd=:new.work_state_cd,
postal_cd=:new.work_postal_cd,
country_tx=:new.work_country_tx

where address_id = :old.work_id;
end if;

-- insert/update/delete home address
if :old.home_id is not null
and :new.home_street_tx is null then
delete from address
where address_id = :old.home_id;

elsif :old.home_id is null
and :new.home_street_tx is not null then
insert into address (address_id, street_tx,
stateprovince_cd, postal_cd,
country_tx, type_cd, customer_id)

values (object_seq.nextval,:new.home_street_tx,
:new.home_state_cd,:new.home_postal_cd,
:new.home_country_tx, ‘H’, :old.customer_id);

else
update address
set street_tx=:new.home_street_tx,

stateprovince_cd=:new.home_state_cd,
postal_cd=:new.home_postal_cd,
country_tx=:new.home_country_tx

where address_id = :old.home_id;
end if;

end;
/

With these triggers, you can INSERT, UPDATE, and DELETE from your view,
and the data is correctly maintained in the database.

Some developers might argue that you should have built your database table
just like the view we created in the first place. Most good designers would
design the database in exactly the way we have here. This way you can easily
modify the database to hold additional kinds of addresses. You could also easily
extend the structure so your address table could attach to different types of
objects (like employees). A database isn’t designed to support a single applica-
tion, but rather it must be built to support multiple uses and easily adapt over
time. INSTEAD OF trigger views look just like what your developers want to see
without compromising good database design principles.

You can create a view for each application screen that looks exactly like the
screen you want. You can place validation logic in the view that is specific to
the application, and you can add any other logic that means writing less
code. There is a big movement in the industry to move code from the data-
base to the application server, but we’ve found that logic that is implemented
in the database runs faster, is less prone to errors, and is easier to maintain.

13_599577 ch07.qxp 5/1/06 12:13 PM Page 180

Understanding INSTEAD OF trigger view performance
If you’re using views to drive your user interface, there is no reason to have
any concerns about performance. The code in the triggers will almost surely
run faster than any other alternative (like code in the application server).
And if it is possible for the code to run faster in the application server, it will
be faster only by hundredths or even thousandths of a second. This isn’t a
performance degradation your users are ever likely to notice.

INSTEAD OF trigger views can cause a performance problem if you try to use
them to support batch routines. There isn’t much overhead in the INSTEAD
OF trigger, but the way in which Oracle executes UPDATE commands can
cause problems because it takes about ten times as long to update 100
columns as it does to update a single column in a table. If you’re updating a
single value by using an INSTEAD OF trigger view that is updating a 100-
column table, it will take twice as long as updating the table directly. Because
Oracle can execute about 10,000 such update statements in a second, this
performance problem becomes apparent only if you’re doing bulk updates to
thousands (or millions) of records. We avoid INSTEAD OF triggers for views
that have to support a great deal of data manipulation.

Locking in INSTEAD OF trigger views
The conventional wisdom for locking used to be that you need to lock all
your objects before updating any of them. The technique for doing this was
to use a SELECT FOR UPDATE command. Experience has shown that using
SELECT FOR UPDATE usually causes many more problems than it prevents.

You’ll want to keep in mind a few modifications of this old conventional
wisdom about locking:

� In the UPDATE and DELETE triggers in Listing 7-7, it is theoretically pos-
sible to cause a deadlock for Oracle to resolve. Because of this possible
but logically unlikely event, some developers would place a SELECT
FOR UPDATE command in the UPDATE and DELETE triggers. Such mea-
sures are almost never necessary.

� Usually you can ignore locking altogether.

� If you want to lock the object when it is open in your user interface, you
have to lock only the customer record. However, in Web applications,
this is hard to do because your session isn’t persistent.

� One alternative to locking the record is to place your own persistent
lock as a column in the database. Then your application effectively
checks out a record for editing, and when the application is done, it
checks the record back in. To do this, pass a unique session ID to each
session when it is initiated. The session uses that ID to lock objects. In
this case, you would add a LockedBySession_ID to the CUSTOMER
table that’s populated when the object is checked out and that’s set to

181Chapter 7: Putting Your Code in the Right Place

13_599577 ch07.qxp 5/1/06 12:13 PM Page 181

NULL when the object is checked back in. Be sure to write a routine to
clear out any locks that might have been left when the session termi-
nated abnormally.

Advantages of putting code
in the database
In most cases, we recommend keeping code in the database. Using a database-
centric approach to creating applications has the following advantages:

� This approach is the most comfortable for experienced Oracle devel-
opers. It uses basically the same philosophy as creating any front-end
application for an Oracle database.

� The system isn’t closely tied to an application development frame-
work (ADF). Most of the non-UI code resides in the database. We explain
why in more detail later in this chapter.

� User interface work becomes much simpler. For example, if you use
Oracle’s JDeveloper, almost all development can be supported through the
JDeveloper wizards. Little hand-coding is required. You can build the ADF
BC project for an application module in a few hours or less because you’re
using only one default entity object definition for each database view.

Disadvantages of putting code
in the database
The following are some of the disadvantages of creating applications by using
a database-centric approach:

� This approach ignores all the power and flexibility of user interface
tools. If you use JDeveloper and the Oracle ADF, you will have a sophisti-
cated framework that you aren’t taking full advantage of.

� You don’t take advantage of the data caching in the user interface.
This is one of the main strengths of Oracle’s ADF BC because it offloads
database activity to another location and thus saves the CPU cycles of
the database server to fulfill its primary purpose — to manage data. The
ADF BC layer can cache rows and maintain consistency with the data-
base. This reduces the number of network messages and the amount of
database activity required to serve data that has already been served.

182 Part III: Standards and Structures

13_599577 ch07.qxp 5/1/06 12:13 PM Page 182

� Many products support the J2EE notion that splitting out some appli-
cation code to another server is beneficial. If the database is called
upon to handle application code, its efficiency to fulfill the primary
directive will be compromised by having to handle complex business
logic.

� Your application is heavily tied to the Oracle DBMS idea of views
with INSTEAD OF triggers. You can’t use this approach to build cross-
database applications unless the other database provides a structure
similar to views with INSTEAD OF triggers.

Putting Code in the Application Server
(Middle-Tier Approach)

Coding in the application server is usually done by using Java in the J2EE
environment or VB.NET or C# in the .NET environment. PL/SQL isn’t used in
middle-tier coding.

Many developers see placing data in the database as old fashioned. It is
clearly “cool” to move all your application code into the middle tier (the cool
way to say “application server”). But if you want your application to run
quickly, scale well, and actually work, be careful about moving too much to
the application server.

If you’re thinking of moving data to the middle tier, you’ll want to consider
the following points, especially in the early stages of your decision-making:

� If your code needs to access the database, it has to go get that data
over the network. That shouldn’t take very long, but if you’re process-
ing millions of records, grabbing each one over the network one at a
time can turn a smoothly running application into an unusable program.

� It’s possible to pull lots of logic into the middle tier and still have a
fast running application. If you can move all the data you need into the
middle tier and then do lots of complex processing and push relatively
little data back to the database, then moving your code to the middle
tier might actually help performance.

In practice, however, this technique is very hard to use. You’re counting
on the benefits of partitioning work away from an overworked database
server to offset the cost of moving data around unnecessarily. Such a
benefit is realized only if your database server is being heavily utilized,
which isn’t a common situation.

183Chapter 7: Putting Your Code in the Right Place

13_599577 ch07.qxp 5/1/06 12:13 PM Page 183

� The main impetus for moving data into the middle tier is that the
developers are Java or .NET programmers who don’t know how to
program well in the database. This lack of skill isn’t a good reason for
placing data in the middle tier.

� Some amount of code should be placed in the middle tier. Code
needed by the user interface will perform better in the middle tier.

� One way that PL/SQL is used in the middle tier is when building appli-
cations using the Oracle Developer suite that includes Oracle Forms
and Oracle Reports. Forms isn’t used for much new development
because it has been eclipsed by J2EE (JDeveloper in the Oracle environ-
ment) and .NET-based products. However, Reports is still one of the best
reporting tools on the market. Both Forms and Reports allow you to write
PL/SQL to support all your logic in those products. This is very conve-
nient because you can move code between the database and the middle
tier easier than with any other language. It’s a shame that no current
development product uses PL/SQL on the application server, nor can you
write Java (at least not very well) or some .NET language in the database.

In addition to the preceding points, we sum up the pros and cons of working
with the middle tier and explore a couple of cases when using this tier might
be to your advantage.

Advantages of the middle-tier approach
The following advantages can be gained by using the middle-tier approach:

� Data caching, code reuse, and independence from the database are
useful aspects of this approach.

� If used correctly, this approach provides development efficiencies
because of the increased modularity of the persistence/business logic
layer.

� You can take advantage of the ability to offload activity from the data-
base server.

Disadvantages of the middle-tier approach
The following are some of the disadvantages of the middle-tier approach:

� It is a conceptually difficult approach because the business rules of the
system might reside in different places. For example, the rules might
reside in the database or in code in the application server. Standards
and guidelines for the use of the different code locations must be devel-
oped and enforced.

184 Part III: Standards and Structures

13_599577 ch07.qxp 5/1/06 12:13 PM Page 184

� Organizations embracing this strategy should be careful to formalize the
design rules. The rules need to answer questions such as “How will
objects be constructed and how will they interact?”

� Without careful planning, the additional flexibility afforded by this
approach can result in systems where bugs are difficult to track down.
This is because the logic error might reside in many places. Well-
designed error messages can assist in reducing this problem.

� If you change your UI architecture (or if the architecture evolves), you
will have to rewrite your application.

Placing code in the view layer
You can use client-side (view layer) coding involving languages like
JavaScript to enforce business rules. This should be done very carefully (and
rarely). By adding code to a Web application, you can greatly increase the
size of the application, causing it to load very slowly. Making round trips from
the client to the application server or database usually takes (at least) a sig-
nificant fraction of a second, making multiple round trips impossible.

Where Should You Place
the Business Logic?

As long as the development team has some requisite PL/SQL skills and isn’t
attempting to create a database-platform independent system, whenever pos-
sible, business logic should be placed in the database, either in functions and
procedures or encapsulated as complex views (perhaps with INSTEAD OF
triggers).

Whether through the evolving J2EE stack or the political arbitrariness of
organizations, architectures change. Organizations might give up and decide
to change their entire development platforms from Oracle to .NET. Drastic
changes in the UI architecture are protected by placing as much logic as pos-
sible into the database. In addition, even though improving performance by
using a middle-tier approach such as ADF BC (where data is cached in the
middle tier instead of the database) is logically possible, in most cases, sys-
tems where business logic is stored in the database will outperform those
where this same logic is stored in the middle tier. The industry standard (par-
ticularly in the OO community) is to pull logic out of the database and place
it in the middle tier. Rarely does this strategy have any beneficial impact on
system performance.

185Chapter 7: Putting Your Code in the Right Place

13_599577 ch07.qxp 5/1/06 12:13 PM Page 185

Logic should never be placed in the view layer when it will require a round
trip to the database or application server. If any logic is placed in the view
layer of Web applications, developers will have to be very careful to avoid
performance problems caused by the increased size of the applications being
loaded to the client machines.

186 Part III: Standards and Structures

13_599577 ch07.qxp 5/1/06 12:13 PM Page 186

Chapter 8

Creating Naming Standards
In This Chapter
� Influences on naming standards

� Naming code elements

� Enforcing standards

Naming and coding standards are among the most important, albeit con-
tentious, topics we cover in this book. (We discuss coding standards in

Chapter 9.) Most developers agree that being consistent in both naming code
structures and organizing code is vitally important for two key reasons:

� Applying standards consistently makes your code easier to read and
allows other developers to maintain the code much more easily.

� Using good naming standards can actually help you write code faster
because you won’t have to stop and think about how to name elements
every time you encounter them.

Despite the almost universal agreement that standards are necessary, there is
little agreement about what these standards should be. Every organization
tends to evolve its own style. If you move from one organization to another,
you’ll find very different naming styles and standards.

The goal of this chapter is to provide some examples of useful PL/SQL
naming conventions. In addition, we present explicit naming and coding
examples to provide a clear understanding of the naming concepts and how
you can implement them.

What’s in a Naming Standard?
When creating or reviewing naming standards, most organizations attempt to
examine the development environment as a whole rather than define the PL/
SQL (or any other) part of their standards in isolation. A number of factors

14_599577 ch08.qxp 5/1/06 12:13 PM Page 187

are related to the programming languages and tools that influence the most
widely used naming conventions. You should be aware of these before setting
your standards.

Oracle database influences
One influence that affects PL/SQL naming and coding standards is the data-
base itself. Oracle includes some naming limitations that you must carry over
into your naming standards. Among your key considerations are the following:

� PL/SQL is an Oracle database programming language. As a result, you
will refer to Oracle database objects such as tables, columns, and stored
procedures. So your naming conventions need to take into consideration
the naming limitations and rules within Oracle.

� Oracle has a length limitation on object names. Most database objects
(tables, columns, views, and so on) must have names that are less than
32 characters long.

� Names of objects are stored all in uppercase (as evidenced in the data-
base view USER_OBJECTS) even if they were created with lowercase or
mixed case. Although later versions of Oracle enable you to create
objects with mixed case, this functionality is rarely used.

� It is particularly challenging to name things appropriately when writing
PL/SQL code to modify or extend existing software or packaged software
where you have no control over the previously established naming stan-
dards. Try to make your PL/SQL naming standards consistent with the
existing database naming standards. Unfortunately, much of the avail-
able packaged software demonstrates inconsistent or nonexistent use of
naming standards. In these situations, we recommend creating your own
naming standards for new code and making the best of existing oddly
named database objects.

Java influences
Writing database applications usually involves some programming language
in addition to PL/SQL. Most user interfaces use Java or .NET to create Web-
based applications. These languages have evolved their own naming conven-
tions. One big difference is that these languages support mixed-case naming.
To create a consistent set of standards throughout your environment, you
might want to use standards similar to those used by most Java (or other lan-
guage) programmers to avoid conflicts between the PL/SQL code and these
other languages.

188 Part III: Standards and Structures

14_599577 ch08.qxp 5/1/06 12:13 PM Page 188

Modern application development
tools and their influences
Unfortunately, many organizations are unwilling to invest in tools to make
their developers more productive. Oracle’s SQL*Plus is a no-frills tool with
few of the nice features of products that try to support PL/SQL development.
Some developers even prefer SQL*Plus for development (just as some Java
or C++ developers who prefer using basic text editors to write code).

However, most developers use code development products such as Quest
Software’s Toad or SQL Navigator, rather than SQL*Plus, to write code. Only
recently did Oracle release a sophisticated, user-friendly graphical PL/SQL
development tool called Oracle SQL Developer (formerly called Project
Raptor). Tools like these, which we introduce in Chapter 2, tend to automati-
cally highlight language reserved words in a contrasting color and might even
do a reasonable job of laying out the code with consistent indentation. When
you’re creating both naming and coding standards, take into consideration
the way these tools operate. For example, before the widespread use of code
development tools, many organizations made all locally named objects lower-
case and language reserved words uppercase to easily distinguish them. This
standard is irrelevant when using code development tools. If you’re using a
tool that automatically formats code according to a reasonable standard, be
sure to adopt this style as your standard.

Setting Naming Standards
for Common Code Elements

You need to create a coherent set of naming standards based on your envi-
ronment, the programming languages involved, and the database software.
The standards shouldn’t be so detailed and complex that they’re impossible
to follow. Neither should they be so lax that they fail to impose some struc-
ture and guidelines for developers to follow.

Because everyone has different ideas about the best standards, many experi-
enced PL/SQL developers might not be comfortable with the examples in this
chapter. So just consider these rules and examples a starting point or jumping-
off point for creating your own standards. The point is to create a set of stan-
dards and rigorously enforce them. No matter what standard you use, it should
include approximately the level of detail proposed in the following pages.

189Chapter 8: Creating Naming Standards

14_599577 ch08.qxp 5/1/06 12:13 PM Page 189

Basic objects
Naming an object is not as simple as it sounds. You must address the follow-
ing factors:

� Capitalization: As already mentioned, capitalization of reserved words
isn’t necessary because you can usually rely on your development tool
to color all reserved words for you.

Using mixed case makes your code much more readable. In general, low-
ercase or mixed-case text is easier to read than uppercase text.

In Java, all classes begin with a capital letter, but objects start with a
lowercase letter. To be consistent with this standard, elements such as
tables and views should start with a capital letter. Columns and vari-
ables should start with a lowercase letter.

� Usage of prefixes and suffixes: Prefixes and suffixes typically indicate
some attribute of the object being named, usually the object’s type or
the type of data that it stores or returns. Many people think that prefixes
and suffixes greatly help in the readability of code. Others find them to
be a useless annoyance.

On the positive side, prefixes and suffixes tell you something about the
element. Another significant advantage of prefixes and suffixes is that
they prevent you from naming an element the same as a reserved word
or a similar object of a different type. On the negative side, prefixes and
suffixes make the element name longer.

We believe that the advantages of prefixes and suffixes outweigh their
disadvantages. The standard we propose in this chapter uses prefixes to
indicate the type of the object and suffixes to indicate the types of data
associated with the element. For example, v_name_tx indicates an
internal variable (v_) that stores text (_tx).

� Degree of abbreviation: All names of elements in Oracle must be less
than 32 characters. This means that very long names aren’t possible in
PL/SQL. Therefore, you have to abbreviate because you simply cannot
use a name like totalPayrollSocialSecurityWithholdingTax.

In general, try to be consistent. If you abbreviate the word Total to Tot
in one context, you might want to seriously consider using Tot for
Total everywhere. This way, you won’t have to remember whether
Total is spelled out in any particular name. To support consistency in
naming, keep a list of abbreviations that all developers will use.

Set a size limit for words (usually six characters). All words with more than
six characters must be abbreviated. Words shorter than six characters are
never abbreviated. Very common short words (such as Total) that have
widely understood common abbreviations can also be abbreviated.

190 Part III: Standards and Structures

14_599577 ch08.qxp 5/1/06 12:13 PM Page 190

� Separating individual words (underscore, initial-letter capitalization,
and so on): You can’t name elements with embedded spaces in PL/SQL.
If the element name includes several words, you need some way to indi-
cate the start of each word. Because Oracle doesn’t support mixed-case
naming very well, many developers use an underscore (_) as a method
of separating words, as in FIRST_NAME. Although the underscore adds a
character to the name (remember, all names must be less than 32 char-
acters), this method has the advantage of clearly indicating different
words in the element name.

The other method used for separating words is to use initial-letter capi-
talization (init-caps) for each word, as in firstName. This is the stan-
dard in Java and other languages that support mixed-case names.

Our proposed standard suggests using the init-caps method. The bene-
fits of shorter names and conforming to the Java standard outweigh the
difficulty in reading the names of database elements. It isn’t usually a
problem to discern beginnings of words in names of database elements
even though they always appear in uppercase (for example,
FIRSTNAME).

Variables
At this point, you may not have used all the datatypes that are mentioned in
Tables 8-1 and 8-2 (most of them are covered in Chapters 10, 11, and 13) but
you need to be aware of the standards set for them.

The following guidelines should be used when naming variables:

� Every variable name must have an attached prefix (see Table 8-1 for
examples).

� Variables (where applicable) are suffixed with an abbreviation to denote
datatype (see Table 8-2).

� Between the prefix and suffix, the name of the variable is one or more
words separated by init-caps.

� If a variable is semantically equivalent to a column in a database table
(whether or not that variable will directly read or write data from the
database column), it should be named the same as the database column
with an appropriate prefix.

191Chapter 8: Creating Naming Standards

14_599577 ch08.qxp 5/1/06 12:13 PM Page 191

Table 8-1 PL/SQL Variable Prefixes
Prefix Variable Type

v_ Local variables declared within a function or procedure

c_ Cursor

r_ Record variable for CURSOR FOR loops

gv_ Global variables declared within a package

gl_ Global constants declared within a package

gc_ Global cursors declared within a package

Table 8-2 PL/SQL Variable Suffixes
Suffix Variable Type

_yn Pseudo-Boolean items using ‘Y’ and ‘N’ for values

_cd Variables restricted to a set of “codes”

_tx All other text formats not covered by cd or yn

_id, _oid Variables to store unique IDs / object IDs

_nr Any numeric datatype not covered by _id or _oid

_dt Date

_ts Timestamp datatype

_tf Boolean variable (TRUE/FALSE values)

_rec Record defined via %ROWTYPE reference to existing table/
view/cursor

_ref REF CURSOR defined via SYS_REFCURSOR datatype

_cl CLOB datatype

_bl BLOB datatype

_bf BFILE datatype

The following examples show how you might apply these prefixes and suf-
fixes to create variable names:

192 Part III: Standards and Structures

14_599577 ch08.qxp 5/1/06 12:13 PM Page 192

� A variable storing a customer’s name: v_custName_tx

� A global variable storing an employee’s death date: gv_death_dt

� A Boolean evaluation variable: v_eval_tf

Many larger organizations extend the idea of variable prefixes and suffixes to
contain even more information. For example, we have listed only six suffixes
for our variables. Some organizations use many more suffixes. They have sep-
arate suffixes to denote a person’s name field (nm), currency (cy), percentage
(pc), and so on.

The bottom line: The more complex you make your variable names, the
easier it is to read the code. However, a complex standard takes longer to
master, and complying with the standard becomes more difficult for the
developers.

Program units: Procedures, packages,
functions, triggers
The following guidelines should be used when naming program units:

� Every procedure or function name should have a prefix (see Table 8-3).

� Every package or trigger name should have a suffix (see Table 8-4).

� Functions are suffixed by the datatype of the value they return. In some
cases, you can use special suffixes to indicate a class of the function
(_DSP for display functions rather than generic _TX).

� Between the prefix and suffix, the name of the variable will be one or
more words separated by initial capital letters (init-caps).

� Trigger names are always a composite. The last part indicates the type
of event (I for insert, U for update, D for delete, or combinations of these
letters). The first part of the trigger indicates its type.

Table 8-3 PL/SQL Object Prefixes
Prefix Object Type

p_ User-defined procedure

f_ User-defined function

pkg_ User-defined package

193Chapter 8: Creating Naming Standards

14_599577 ch08.qxp 5/1/06 12:13 PM Page 193

Table 8-4 PL/SQL Trigger Suffixes
Suffix Object Type

<table>_B[I,U,D] Row-level BEFORE triggers

<table>_SB[I,U,D] Statement-level BEFORE triggers

<table>_A[I,U,D] Row-level AFTER triggers

<table>_SA[I,U,D] Statement-level AFTER triggers

<table>_I[I,U,D] INSTEAD OF trigger

In the following examples, you can see how these prefixes work with actual
procedures and functions:

� A procedure that runs employee payroll: p_empPay

� A package that stores employee related functions and procedures:
pkg_empUtil

� A function that returns an employee’s birthday: f_empBirth_dt. Note
that because the variable uses the date suffix (_dt), you don’t need to
include the word Day or Date in the name.

� A function that returns a VARRAY of all managers: f_mgr_va

� A row-level BEFORE UPDATE trigger on table EMP: emp_bu

� An INSTEAD OF trigger on the view V_EMP to handle inserts, updates
and deletes simultaneously: v_emp_iiud

Parameters in code objects
Use the following guidelines for naming parameters:

� Every parameter will be prefixed by one to three characters that indi-
cate its input/output type and context. (See Table 8-5.)

� Otherwise parameters are named the same as regular data variables.
(See the section “Variables,” earlier in this chapter.)

Table 8-5 Parameter Prefixes
Prefix Variable Type

i_ Procedure and function IN variable

o_ Procedure OUT variable

194 Part III: Standards and Structures

14_599577 ch08.qxp 5/1/06 12:13 PM Page 194

Prefix Variable Type

io_ Procedure IN OUT variable

ci_, co_, cio_ Parameter (IN, OUT, and IN OUT) called in a cursor

fi_, fo_, fio_ Parameter (IN, OUT, and IN OUT) in a local function

pi_, po_, pio_ Parameter (IN, OUT, and IN OUT) in a local procedure

Rather than giving specific examples, illustrating parameter naming in the
context of a small program might be clearer. Listing 8-1 assumes that you want
a program to return the address of an employee, given the employee’s ID.

Listing 8-1: A Parameter Naming Example

create or replace function
f_currAddr_tx (i_emp_id NUMBER ➞2

return VARCHAR2 is
cursor c_currAddr (ci_emp_id NUMBER) is ➞4

select addr.addr_tx
from addr, emp

where addr.emp_id = emp.emp_id
and emp.emp_id = ci_emp_id;
v_currAddr_rec c_currAddr%ROWTYPE;

v_addr_tx addr.addr_tx%TYPE;

--local function to get employee name
--for line 1 of addr display
function f_empName_tx (fi_emp_id NUMBER) ➞15

return VARCHAR2 is
v_out_tx VARCHAR2(2000);

begin
select ename
into v_out_tx
from emp

where emp_id = fi_emp_id;
return v_out_tx;

end f_empName_tx;

begin -- f_currAddr_tx
open c_currAddr (i_emp_id);
fetch c_currAddr into v_currAddr_rec;
close c_currAddr;
v_addr_tx := r_currAddr.addr_tx;
return v_addr_tx;

end f_currAddr_tx;

195Chapter 8: Creating Naming Standards

14_599577 ch08.qxp 5/1/06 12:13 PM Page 195

Check out the following explanations of lines from Listing 8-1:

➞2 i_emp_id is declared as an input parameter for the main function.

➞4 ci_emp_id is declared as an input parameter for a cursor.

➞15 fi_emp_id is declared as the input parameter for a local function.

Exceptions
User-defined exceptions will include a prefix string e_ to identify exceptions,
followed by a descriptive name. The name should contain two parts: what
went wrong, and what thing failed. For example, if a procedure to run payroll
(p_runPay) failed, you might call the exception e_failRunPay.

The exception might have a datatype suffix if it refers to a variable with a
datatype suffix. For example, if you want an exception for an incorrect format
of the Social Security number (SSN_tx), you could call it e_BadSSN_tx.

The following examples illustrate how you might apply these exception-
naming standards:

� An exception for a too-long name field: e_longName_tx

� An exception for a function (f_getSalary) that should have returned a
value but didn’t: e_noValueFromGetSalary

User-defined datatypes
The name of all user-defined datatypes should include a composite suffix as
shown in Table 8-6.

Table 8-6 User-Defined Datatypes
Suffix Type

_oty User-defined object type

_rty User-defined record type

_sty User-defined subtype

_rcty User-defined REF CURSOR type

All variables of user-defined datatypes should have appropriate prefixes (v_,
gv_, and so on) and corresponding suffixes. Listing 8-2 shows the proper use
of naming standards:

196 Part III: Standards and Structures

14_599577 ch08.qxp 5/1/06 12:13 PM Page 196

Listing 8-2: An Example of Proper Naming Standards Usage

create or replace TYPE custAddress_oty as object(
street_tx VARCHAR2(50),
city_tx VARCHAR2(30),
state_cd CHAR(2),
zip_tx VARCHAR2(10));

create or replace package pkg_commonType
is

gv_addres_oty custAddress_oty;

type custAddress_rty is record(
street_tx VARCHAR2(50),
city_tx VARCHAR2(30));

type WeakRefCursor_rcty is ref cursor;

subtype smallString_sty is VARCHAR2(10);

gl_region_sty constant smallString_sty:=’North-East’;
end;

Collections
Oracle supports three types of collections:

� Associative arrays

� Nested tables

� VARRAYs

The name of the collection type will include a suffix string to identify the
type. Table 8-7 shows the list of suffix strings for collection types.

Table 8-7 Collection Suffixes
Suffix Collection Type

_aa Associative arrays

_nt Nested tables

_va VARRAYs

Instances of object collections or VARRAYs are prefaced with in the same way
as variables (v_, gv_ and so on) and have the same suffixes as their
datatypes (see Listings 8-3 and 8-4).

197Chapter 8: Creating Naming Standards

14_599577 ch08.qxp 5/1/06 12:13 PM Page 197

Listing 8-3: An Associative Array

declare
type emp_rty is record (➞2

name_tx VARCHAR2(50),
age_nr INT);

type emp_aa is table of emp_rty ➞6
index by binary_integer;

v_emp_aa emp_aa; ➞9
begin
-- code goes here
end;
/

Here’s what’s going on in Listing 8-3:

➞2 Declaration of record type to help define the associative array.

➞6 Declaration of the associative array type.

➞9 Declaration of an instance of the associative array.

Listing 8-4: A VARRAY

declare
type integer_va ➞3
is varray (10) of integer;

v_integer_va integer_va; ➞5
begin
-- code goes here

end;

Like the code in Listing 8-3, lines 3 and 5 in Listing 8-4 also use prefixes and/
or suffixes.

Filenames
When you write code, it is stored in the database. However, most organiza-
tions also store the script to create the object in a text file. You can then
archive these files in a configuration management system to efficiently
manage software versioning.

The name of the file will be the name of the database object being created.

198 Part III: Standards and Structures

14_599577 ch08.qxp 5/1/06 12:13 PM Page 198

The file type (or extension) indicates the type of object created. A three-letter
suffix will be used as the file extension to identify the type of DDL stored in
the file. Table 8-8 shows some common object type abbreviations.

Table 8-8 Object Type Abbreviations
Object Type Abbreviation Object Type

pks Package specification

pkb Package body

fnc Function

prc Procedure

trg Trigger

tys Type specification

tyb Type body

The following examples show how these abbreviations might work with
actual files:

� The script for creating the function f_getEmp_dsp will be stored in the
file f_getemp_dsp.fnc.

� The script to create a utility package specification might be pkg_
util.pks.

� The script to create the same package body might be pkg_util.pkb.

Making Sure Your Organization
Follows Standards

Most organizations recognize the need for standards. They take the time to
create and distribute naming standards. However, relatively few organiza-
tions actively enforce those same standards. To enforce standards, all code
must be reviewed prior to delivery. Code review may be done less formally
by a coworker or it may be a formal step in the code delivery process. Each
organization must decide the best way to enforce the standards that it sets.

199Chapter 8: Creating Naming Standards

14_599577 ch08.qxp 5/1/06 12:13 PM Page 199

When standards are in place, you need to be vigilant to make sure that devel-
opers follow them consistently. All it takes is one project that deviates from
an organization’s standards to change the culture from one that strictly
adheres to standards to one where developers code any way they want. The
extra work involved in creating and enforcing the naming standards will defi-
nitely pay off in the long run by making all your code easier to read and main-
tain over time.

200 Part III: Standards and Structures

14_599577 ch08.qxp 5/1/06 12:13 PM Page 200

Chapter 9

Creating Coding Standards
In This Chapter
� Uncovering universal truths

� Discovering SQL development rules

� Examining PL/SQL development rules

� Checking out stored PL/SQL program units

This chapter provides some useful coding standards for PL/SQL develop-
ers. Setting and adhering to standards creates a uniform environment

that makes it much easier to read and later modify code. Standards can also
decrease the cost of the initial development of the code. Well-designed code
is easier to write and debug.

Coding standards are as hotly contested a topic as naming conventions. How
to capitalize, where to break up lines, and how to comment the code can
inspire lively debates within organizations.

This chapter explains the important benefits of standards and provides useful
coding standards for PL/SQL developers. Throughout the book, we talk about
how to write good code. This chapter summarizes many of the rules and sug-
gestions to help you write code that is easier to read and maintain. Because
many of the same standards are applicable in both SQL and PL/SQL contexts,
this chapter also includes a discussion of how to lay out your SQL code.

Why Standards Are Important
Coding standards, by and large, don’t directly affect how the code behaves.
However, they do have some important benefits:

� Standards can make your code less prone to errors. For an example,
see the later section, “Use explicit data conversion for dates.”

� Standards make the code easier to read and maintain. Setting and
adhering to standards creates a uniform environment. This is important
because code that goes into production has a bad habit of living for

15_599577 ch09.qxp 5/1/06 12:14 PM Page 201

many years in a system. In the Y2K (year 2000) crises that hit the soft-
ware industry in the late 1990s, millions of lines of COBOL code used a 2-
digit field for the year. When the calendar rolled around to 2000, all that
code was going to stop working. No one worried about this problem
when the code was written in the 1960s and 1970s (up to 40 years previ-
ously). Count on the fact that the code you write will still be in produc-
tion long after you retire.

� Standards can decrease the cost of the initial code development. Well
designed code is easier to write and debug.

When programmers follow standards, they can more easily find errors, debug
code while testing, and maintain code by quickly zeroing in on the problem
spots.

Universal Truths
Developers can disagree about the right way to do things. However, the fol-
lowing guidelines are well accepted as good coding practices by most senior
developers (even though many of these guidelines might not be very care-
fully followed).

These standards aren’t unique to PL/SQL. Any programming language code
should also follow these rules.

Don’t hard-code any constant value
Never reference a constant in your code. This is especially true if the value is
already stored in the database. For example, if you have special code that
you need to execute for employees who live outside the United States and
you have a column called country_cd that refers to the country USA in your
EMPLOYEE table, you could create a constant that could be referenced
throughout the application. As a result, it might be reasonable to consider
these as global constants. Without the idea of such global constants, your
code will look something like the examples in Listings 9-1 and 9-2.

Listing 9-1: Hard-Coded Data Value

declare
cursor c_employee is
select emp_id,

name
from employee
where country_cd != ‘USA’; ➞6

begin

202 Part III: Standards and Structures

15_599577 ch09.qxp 5/1/06 12:14 PM Page 202

for r_employee in c_employee loop
-- process non-US employees

end loop;
end;

➞6 Hard-coded reference to USA.

Imagine that the code in Listing 9-1 is part of a large system and that USA is
referenced hundreds of times. Then your boss comes in and tells you to
change the USA code to US throughout the database. This means that all of
your code is going to stop working!

As a second example, imagine that you want implement a rule to limit pur-
chases to no more than $10,000. To do this, you might include something like
Listing 9-2.

Listing 9-2: Hard-Coded Rule Parameter

if v_amount_nr > 10,000 then
-- do something about the large amount

end if;

Raising the limit to $15,000 might seem like a simple task. However, if your
system has hundreds or even thousands of program units, finding this spe-
cific rule might take days.

You can avoid these problems by placing all referenced values in a special
package like the one shown in Listing 9-3. (We discuss packages in Chapter 7.)

Notice that you can’t simply make the values variables in the package specifi-
cation. Instead, create the variables in the package body and reference them
through a procedure that sets the value (the setter) and a function that
retrieves the value (the getter). The reason to do this is that there are limita-
tions to using package variables. The biggest problem is that you can’t
directly reference them in SQL.

Listing 9-3: Globals Stored in a Package

create or replace
package pkg_global
is
procedure p_countryUSA_cd (i_CD VARCHAR2); ➞4
function f_countryUSA_cd return VARCHAR2; ➞5

procedure p_purchaseLimit_nr (i_nr NUMBER);
function f_purchaseLimit_nr return NUMBER;

end; -- PKG_GLOBAL

(continued)

203Chapter 9: Creating Coding Standards

15_599577 ch09.qxp 5/1/06 12:14 PM Page 203

Listing 9-3 (continued)
create or replace
package body pkg_global
is
--- data variables
gv_countryUSA_cd VARCHAR2(3) := ‘USA’; ➞16
gv_purchaseLimit_nr NUMBER := 10000;

procedure p_countryUSA_cd (i_cd VARCHAR2) is ➞20
begin
gv_countryUSA_cd := i_cd;

end; ➞23

function f_countryUSA_cd return VARCHAR2 is ➞25
begin
return gv_countryUSA_cd;

end; ➞28

procedure p_purchaseLimit_nr (i_nr NUMBER) is
begin
gv_purchaseLimit_nr := i_nr;

end;

function f_purchaseLimit_nr return NUMBER is
begin
return gv_purchaseLimit_nr;

end;

end;

Here are the details about Listing 9-3:

➞4, 5 The setter and getter for country_cd.

➞16 The package body variable that stores country_cd.

➞20–23 The setter code for country_cd.

➞25–28 The getter code for country_cd.

Using the pkg_global package in Listing 9-3, Listings 9-1 and 9-2 could be
rewritten with the globals stored in the pkg_global package to produce
Listings 9-4 and 9-5.

Listing 9-4: Replace Hard-Coded Data Value with Reference

declare
cursor c_employee is
select emp_id,

name
from employee

204 Part III: Standards and Structures

15_599577 ch09.qxp 5/1/06 12:14 PM Page 204

where country_cd != pkg_global.f_countryUSA_cd;
begin

for r_employee in c_employee loop
-- process non-US employees

end loop;
end;

Listing 9-5: Replace Rule Parameter with Reference

if v_amount_nr > pkg_global.f_purchaseLimit_nr then
-- do something about the large amount

end if;

Despite the advantages of replacing hard-coded values with globals, this
guideline is seldom followed. It takes an extra few seconds each time for the
programmer to write the code that references a value to check that the value
is in the global package and ready to be referenced. Most programmers will
never take that extra time unless forced to do so.

In large organizations, individual programmers are usually not allowed to
modify the global package to make sure that no one makes a mistake that
could potentially impact hundreds of other programs.

Don’t make your program
units too big or too small
Inexperienced programmers don’t always segment their code into discrete
program units. Instead, they write individual routines that include hundreds
or even thousands of lines of code. On the other hand, some inexperienced
programmers learned about “structured programming” in a college class.
These programmers might break every 20 lines of code into its own program
unit, creating unreadable, unmaintainable “spaghetti” code, with routines
calling other routines which call still other routines 10–20 levels deep.

Whenever a routine stretches over a few hundred lines of code and resides
in a single program unit with no local functions or procedures, ask yourself
whether you can break up the code into smaller chunks. On the other side of
the spectrum, if your code has dozens of little routines of 20 or fewer lines
each calling each other with more than 5 levels of nesting, think about con-
solidating the code more efficiently.

The only way to get a feel for the right size of a program unit is to have some-
one else review your code. You wrote the routine, so the logical structure is
clear to you. However, if someone else has to maintain your code, will he or
she able to do it? To verify that your code is maintainable, have someone else

205Chapter 9: Creating Coding Standards

15_599577 ch09.qxp 5/1/06 12:14 PM Page 205

look over it. If that person can’t figure out the logic just by looking at your
code, you have a problem.

As in all things, there are exceptions to the rules. Some routines don’t lend
themselves easily to being divided and can get quite large. However, if a
single program unit is longer than 1,000 lines, something is probably wrong.

Put each data element on its own line
When declaring cursors and calling functions with lots of parameters, put
each data element on its own line. The SQL INSERT statement in Listing 9-6
illustrates this standard.

Listing 9-6: Place Data Elements on Separate Lines

insert into emp (
empNo
eName,
sal)

values (
123, --empNo
Fred, --eName,
1000); --sal)

Notice how easy it is to see the different values. The column names are also
repeated next to each of the values. This makes it very easy to be sure that
you are assigning your values into the right column. The following are some
simple guidelines to follow:

� Always repeat the column names in the values section of the INSERT
statement.

� Write the top half of the code statement with all the column names, and
then copy and paste those names into the bottom half of the code.

� Add values as you comment out the column names in the bottom half.

Some programmers like to put commas at the start of each line rather than
at the end. That way, you can more easily comment out any particular line of
the code without having to worry about removing the comma at the end of
the previous line. This practice makes the code look somewhat funny, but it
is a popular practice. There is no right answer to the question of which side
of the element to add the comma. But whichever side your organization
chooses, everyone needs to follow the standard consistently.

206 Part III: Standards and Structures

15_599577 ch09.qxp 5/1/06 12:14 PM Page 206

Too many comments are much
better than too few comments
Every programming class you will ever take and every programming book
you will ever read says that you should comment your code. Few resources
address the issue of what, exactly, needs to be commented and how to do it.

To indicate comments, use the double dash (- - comment) rather than the
/*comment*/ construct. This makes it easy to comment out large blocks of
code by using /* */ when debugging.

Realistically, the only way you are likely to comment your code carefully is if
you’re forced to do so by your organization. This is another reason why orga-
nizations should set and enforce clearly defined standards. Code should
always be reviewed by someone other than the person who wrote it before
the code is used in a production system. Code should fail the review if it
doesn’t contain enough comments.

How many comments are enough?
To help you understand what we mean by “enough” comments, use the fol-
lowing guidelines:

� First and foremost, note who wrote the code and when it was written or
modified. Many organizations insist on placing an author comment block
at the top of each routine to show who has modified it. Listing 9-7 shows
a sample author comment block.

Listing 9-7: An Author Comment Block

--Author Date What
--jsmith@dulcian.com 1/1/2005 Initial coding
--tjones@dulcian.com 2/2/2005 Performance tune SQL
--jsmith@dulcian.com 3/3/2005 Added date filter

� Inside the code routine, add a comment every time you modify code that
is in use or was written by someone else.

� Every routine should have a comment at the top that explains what the
routine does.

� You should also add comments at the beginning of every major section
and whenever there is anything interesting or not obvious in your code.
A good rule is that if you’re looking at a screen’s worth of code and don’t
see any comments, you probably have too few.

207Chapter 9: Creating Coding Standards

15_599577 ch09.qxp 5/1/06 12:14 PM Page 207

� Automatically comment all BEGIN and END statements (END, END IF,
and END LOOP). Doing so makes it much easier to see the structure of
the code with such comments. These comments need not be very long.
They’re just there to assist readability.

The goal is to make your code readable by another developer who might
have to modify it. Therefore, the best way to know whether your code is ade-
quately commented is to show it to another developer to see whether he or
she can understand how your code works. Although it’s tempting to look at
one’s own code and say, “This code is so simple, it’s self-documenting,” the
author of the code can hardly be objective about his or her own work. If the
other developer cannot easily follow your code, it needs more comments.

Writing useful comments
Writing a good comment is an art in itself. In addition to explaining when to
comment, we also include helpful guidelines for how to comment:

� Keep in mind what information is useful to a future reader of your
code. A comment Start of loop next to a statement that initiates a
LOOP statement is a wasted comment. However, if the comment says
main customer loop, it clearly indicates what the loop is and helps
the programmer who will have to later read or maintain your code.

� Some “obvious” comments can be very helpful. Commenting the END
statement of every program unit seems pretty silly. If the line is the last
line in the program, it must be the final END; statement. However, when
you’re debugging, you might have several END statements in a row. Being
able to see which is which is very helpful.

� Try to keep your comments to no more than a line or two. Comments
shouldn’t be so long as to make the code harder to read. Some program-
mers get carried away and write paragraphs in the middle of routines
explaining their rationale for why the code is written in a certain way.
Rarely is such explanation needed within the code.

Many different comments sprinkled throughout the code are much
better than a few verbose descriptions.

Looking at example comments
Listing 9-8 is an example of well-commented code that illustrates the good
coding standards described in this section.

Listing 9-8: Well-Commented Code

declare
--Routine to process payroll. ➞2
--Author Date What ➞3
--jsmith@dulcian.com 1/1/2005 Initial coding

208 Part III: Standards and Structures

15_599577 ch09.qxp 5/1/06 12:14 PM Page 208

cursor c_emp is -- main emp cursor ➞6
select

eName,
sal,
deptNo

from emp;
v_dName_tx dept.dName%TYPE;
function f_dName_tx (fi_deptNo NUMBER) ➞13
return VARCHAR2 is

--Get dName for each emp. ➞15
--No exception handling needed.
--temp output variable ➞17
v_out_tx dept.dName%TYPE;

begin -- f_dName_tx ➞19
-- prevents no data found exception ➞20
if fi_deptNo is not null then
select dName
into v_out_tx
from dept

where deptNo = fi_deptNo;
end if; ➞26
return v_out_tx; -- return null if no deptNo ➞27

end f_dName_TX; ➞28

begin --main ➞31
for r_emp in c_emp loop
v_dName_tx := f_dName_tx(r_emp.deptNo);
--
-- lots of code here to process payroll
--

end loop; -- main emp loop ➞37
end; --main ➞38

The following list explains lines from Listing 9-8:

➞2 The main description of routine.

➞3 An author block.

➞6 A comment describing the cursor.

➞15 A description of the local function.

➞17 A description of v_out_tx.

➞19 Indicates the start of the function.

➞20 Describes the function if fi_deptNo is not null.

➞27 The fact that the function will return NULL if deptNo is NULL isn’t
obvious and therefore needs a comment.

➞28 No comment is needed on this END statement because the func-
tion name is part of the END statement.

209Chapter 9: Creating Coding Standards

15_599577 ch09.qxp 5/1/06 12:14 PM Page 209

➞31 The beginning of the main program.

➞37 The end of main EMP loop.

➞38 The end of the program.

Avoid global variables
In well-structured programs, the only variables referenced within a routine
are defined within that routine or are passed to the routine as parameters,
except for comments, as we discuss earlier. Any time you reference a variable
outside the scope of a routine, you’re using a global variable. A true global
variable would be one that could be accessed anywhere in the whole system.
However, the term global applies anytime a routine uses variables declared
outside the scope of the routine.

Note that not all global variables are necessarily bad. The method we describe
here to avoid hard-coded variables encourages you to use global references to
avoid hard-coded values. Each of those values could be passed to the program
as a parameter but would probably make the code very awkward.

In general, structuring program units to be completely self-contained is the
best strategy. You can more easily test the code. You know that if there is a
bug in the routine, it is definitely in the routine and not being caused by some
other part of the code that is inappropriately manipulating a global variable.

In Listing 9-8 earlier in this chapter, lines 13–28 completely encapsulated the
function f_dName_tx. It doesn’t reference any values that were not declared
or passed to the function as parameters.

Sometimes, you should use true global variables. Even though you should do
your best to avoid global variables, if avoiding them makes the code harder
to read, by all means, use them. For example, if you have many program units
in a package that all are performing validations on the same record, rather
than passing the same record variable into each routine, just declaring the
record once at the top of the package body is probably clearer. This allows
each routine to refer to the record rather than pass it into each program unit.

Indent carefully
Indenting your code is probably one of the easiest ways to make it more read-
able. Listing 9-8, shown earlier, is an example of properly indented code. For
each code block, the BEGIN and END commands are at the same level of inden-
tation (lines 19 and 28). Within a code block, everything else is indented (lines
21 and 26). Fields are indented within a SELECT statement (lines 8 and 9).

210 Part III: Standards and Structures

15_599577 ch09.qxp 5/1/06 12:14 PM Page 210

The easiest way to apply indenting standards consistently is to let your
PL/SQL editor do it for you. Most popular products do a fairly good job of
indenting the code automatically. If you aren’t using such a product or you
dislike the way in which your product indents your code automatically, you
need to do it manually. We discuss popular third-party editors in Chapter 2.

Be careful with capitalization
Reserved words (BEGIN, END, SELECT, and so on) have specific meanings and
must stand out, but there are two schools of thought about how reserved words
should stand out. To capitalize or not to capitalize, that is the question.

There is no accepted consensus about whether reserved words should be
capitalized. Steven Feuerstein, the best-known PL/SQL expert, prefers to capi-
talize them. But capitalized words make the code harder to read, take up
more space, and take more time for less able typists to enter. Most modern
PL/SQL editing tools color-code reserved words. This way, you don’t need to
do anything special in order to make them stand out.

A good standard to follow is to use lowercase for all reserved words unless
you don’t have a PL/SQL editor that colors the reserved words. In that case,
capitalize your reserved words. Either way, you need to be consistent with
capitalizing all the reserved words in PL/SQL. For a more in-depth discussion
of capitalization in user-created objects, see Chapter 8.

Use generic variable datatype
declarations
Most variables in your code retrieve data from columns in the database or
store data in those columns. Because you’re always moving data from one
variable to another, if your data variables aren’t of the correct type, some
very strange problems can occur. DML statements can fail because you’re
trying to put data into a variable that is too small for it, and you can get
rounding errors by assigning numeric data into inconsistent types.

The best way to avoid such problems is to never directly assign datatypes to
your data. For variables that can be the same datatype as a column in the
database, the solution is simple. You can set the datatype of the variable to
be the same as that of the database column. For example, to write code to
retrieve the last name of an employee (emp.eName), you can define your
variable by using the %TYPE or %ROWTYPE reference declaration in PL/SQL, as
shown in Listing 9-9.

211Chapter 9: Creating Coding Standards

15_599577 ch09.qxp 5/1/06 12:14 PM Page 211

Listing 9-9: The %TYPE Command Illustrated

declare
v_eName_tx emp.eName%TYPE; ➞2
v_emp_rec emp%ROWTYPE; ➞3

begin
v_eName_tx := ‘Smith’; ➞5
v_emp_rec.eName := ‘Chan’; ➞6

end;

Here’s what’s going on in Listing 9-9:

➞2 Declares v_eName_tx based on a column in the table.

➞3 Declares record variable based on the whole table.

➞5 The references variable.

➞6 The references record component.

There are times when you need to declare a variable that isn’t based on a
table column. For example, if you create a v_fullName_tx variable that will
concatenate first and last names together, the variable needs to be wider
than either the first or last name field. You can always define your variable to
be the maximum possible length of the variable; but if, at a later time, the
maximum length of the last name field changes in the database, your code
will be out of date.

You can solve this problem by never hard-coding datatypes. You can place
a set of generic data widths in a package and reference them there. That way,
if things change in the database, you have to access only one package to
update your datatypes. Many programmers think of such structures as vari-
able domains. PL/SQL implements domains in a structure called subtypes (and
you can read more about them in Chapter 11).

Listing 9-10 shows a subtype package to store the datatypes so that you use
only those subtypes in the code.

Listing 9-10: A Subtypes Example

create or replace
package pkg_subtype is
--Employee First + Last + 1
subtype fullName_sty is VARCHAR2(61); ➞4

end pkg_subtype;

declare
v_fullName_sty pkg_subtype.fullName_sty; ➞8

begin
v_fullName_sty := ‘Margaret Chan’;

end;

212 Part III: Standards and Structures

15_599577 ch09.qxp 5/1/06 12:14 PM Page 212

Here are more details about Listing 9-10:

➞4 This line defines the new type in a package.

➞8 This line declares a variable based on the new type.

This is another guideline that few organizations follow. Not even all the exam-
ples in this book use this technique. However, this technique produces code
with significantly fewer problems due to datatype mismatch errors.

Limit line length
To improve the readability of the code, lines should not exceed 80 characters
so that you can print out your code on paper.

Use explicit data conversion for dates
When storing or displaying dates, never use implicit date conversion. The
default date format is a database parameter (NLS_DATE_FORMAT) that could
possibly be changed by a DBA. Also, be aware that the standard date format
differs from country to country. An example of explicit date conversion is
shown in Listing 9-11.

Listing 9-11: Explicit Date Conversion

declare
v_temp_dt DATE;
v_count_nr NUMBER(10);

begin
-- Implicit date conversion. NEVER do this!
v_temp_dt := ‘01-JAN-03’;

-- Explicit declaration of format mask. ALWAYS do this!
v_temp_dt := to_DATE(‘01-JAN-2003’,’dd-mon-yyyy’);

-- Explicit declaration of format mask in where clause.
select count(*) into v_count_nr
from emp
where hiredate < to_DATE(‘01-JAN-2003’,’dd-mon-yyyy’);

end;

Use synonyms
Because the schema where objects are found might change between environ-
ments, you shouldn’t explicitly state the owner of an object. For objects not

213Chapter 9: Creating Coding Standards

15_599577 ch09.qxp 5/1/06 12:14 PM Page 213

found in that schema, use private or public synonyms to provide schema
independence.

Developing SQL Code Consistently
This section provides guidelines for creating a uniform SQL code base.

Using a new line
All the main parts of a SQL statement (for example, SELECT, FROM, WHERE,
INSERT, and so on) and phrases (for example, GROUP BY, ORDER BY,
BETWEEN...AND) must start on a new line indented to the proper position.

The reserved words AND and OR should usually begin on a new line. An
exception to this rule is when the reserved words appear in a complex
expression or the non-leading part of a phrase (that is, BETWEEN...AND).

Using explicit column lists
Using SELECT * should be avoided, but can be used in rare circumstances.
Some cursor SELECT statements are appropriate places to use SELECT *.

If you want to query all the columns in a table or view and you’re going to
base a record on the cursor, using SELECT * is perfectly appropriate. If the
structure of the table changes (for example, when a new column is added),
depending upon the circumstances, you might not have to change your code
at all. If you need to change the code, using this technique reduces the
number of changes required.

Listing 9-12 is an example of where you might want to use SELECT *. In this
case, you declare a cursor based on the EMP table and manipulate the data in
that cursor in the program.

Listing 9-12: Using SELECT * in a Cursor

declare
cursor c_emp is
select *
from emp;

v_empName_tx emp.eName%TYPE;
v_empSal_nr emp.Sal%TYPE;
v_empDept_nr emp.deptNo%TYPE;

214 Part III: Standards and Structures

15_599577 ch09.qxp 5/1/06 12:14 PM Page 214

begin
for r_emp in c_emp loop
v_empName_tx := r_emp.eName;
v_empSal_nr := r_emp.Sal;
v_empDept_nr := r_emp.deptNo;

..
end loop;

end;

Prefixing (and suffixing) column
names from multiple tables
To improve the readability of a SQL statement, all columns should be pre-
fixed with the table name or table alias if multiple tables are used. Some
guidelines for table aliases are as follows:

� The alias for a table name consisting of a single word should not be
abbreviated.

� The alias for a table name consisting of multiple words should be created
by using the first letter of each word in the table name. For example, if
the table is called PurchaseOrderDetail, you can alias the table POD.

� Append a sequence number or some text identifier to the alias if the
table is used multiple times in the same query (for example, POD1 and
POD2 or PODbig and PODsmall).

� In the case of nested queries, suffix the outer query table alias with _out
and/or inner query table alias with _in.

To demonstrate these guidelines, create a query to return the names of
employees and their managers in departments with more than five employ-
ees. The appropriate column prefixes are shown in Listing 9-13.

Listing 9-13: A Table Prefixing of Columns

select empMgr.eName mgrName, ➞1
emp.eName empName ➞2

from
emp empMgr ➞4

join emp ➞5
on empMgr.empNo = emp.empNo
where empMgr.deptNo in

(select dept_in.deptNo from ➞8
emp emp_in ➞9
join dept dept_in ➞10

on emp_in.deptNo = dept_in.deptNo
group by dept_in.deptNo
having count(*) > 5) ➞13

215Chapter 9: Creating Coding Standards

15_599577 ch09.qxp 5/1/06 12:14 PM Page 215

The following list further explains the code in Listing 9-13:

➞1, 2 Both eName columns are prefaced with their table or table aliases.

➞4, 5 The emp column appears in the query twice, so at least one must be
aliased.

➞8–13 A subquery to limit the returned departments to those with five or
more employees.

➞8 Alias deptNo by using the subquery alias.

➞9, 10 Alias the two subquery tables.

Giving columns aliases
There are two situations when you must use an alias for a column, in the
SELECT statement:

� When the selected value is an expression, you should use a logical name
that describes the purpose of the expression.

� When you’re selecting columns with the same name from two different
tables (or two instances of the same table), the column must be prefixed
with the underlying table name or table’s alias.

In Listing 9-13, lines 1 and 2, the eName column was aliased because it was
selected twice, once from each instance of the EMP table.

Using parentheses in complex
mathematical and logical expressions
To avoid logic and syntax mistakes, you should use parentheses in all com-
plex expressions. Unfortunately, it is fairly common for developers to be lazy
about this practice. Table 9-1 shows how not using parentheses in logical
expressions can be dangerous.

Table 9-1 Parentheses in Logical Expressions
Predicate Conditions Evaluation Result

‘a’ = ‘c’ AND ‘a’ = ‘b’ OR ‘a’ = ‘a’ TRUE

(‘a’ = ‘c’ AND ‘a’ = ‘b’) OR ‘a’ = ‘a’ TRUE

‘a’ = ‘c’ AND (‘a’ = ‘b’ OR ‘a’ = ‘a’) FALSE

216 Part III: Standards and Structures

15_599577 ch09.qxp 5/1/06 12:14 PM Page 216

Using white space intelligently
White space plays an important role in keeping your code easy to read, so
generously space all code. A blank line should precede and follow a new pro-
cedure block and all comment blocks.

Writing save exception handlers
No exception handler should ever have just the statement WHEN OTHERS
THEN NULL;. Errors should be expected, trapped, and recorded, or allowed
to propagate to the calling program. If you want to ignore a specific error, you
can trap it and ignore it, but never use WHEN OTHERS THEN NULL; by itself.
See Chapter 5 for more about handling errors. By ignoring errors in your
code, you can introduce bugs that are very hard to find.

Packaging stored program units
Program units stored in the database (procedures, functions, and so on)
should reside inside a PL/SQL package. You should usually avoid functions
and procedures that are not stored in a package. That’s because you’ll proba-
bly have hundreds of program units supporting your system, and as the
number of program units grows, managing them becomes more and more dif-
ficult. Placing all program units in a package right from the start is a good
practice. That way, the number of program units always stays manageable.

Like all rules, this one has exceptions. In one project, we had to replace most
calls to the sysdate function in our program with a special function that
adjusted the values to compensate for the time zone where the user was
located. So, we wrote our function and stored it as a function (not stored in a
package) called f_sysdate. Then we just replaced the calls to sysdate with
f_sysdate. The code also contained many places that needed to not be
time-zone adjusted. By naming our function f_sysdate, we could change
from one command to the other by just changing two characters.

We discuss packages in more detail in Chapter 7.

217Chapter 9: Creating Coding Standards

15_599577 ch09.qxp 5/1/06 12:14 PM Page 217

218 Part III: Standards and Structures

15_599577 ch09.qxp 5/1/06 12:14 PM Page 218

Part IV
PL/SQL Data

Manipulations

16_599577 pt04.qxp 5/1/06 12:14 PM Page 219

In this part . . .

This part builds on the knowledge you have gained in
earlier chapters and discusses both basic (Chapter 10)

and advanced (Chapter 11) data types.

This part also includes explanations of large objects
(CLOB, BLOB, and BFILE) as well as collections and bulk
operations. You need to understand these concepts when
working on more complex systems.

16_599577 pt04.qxp 5/1/06 12:14 PM Page 220

Chapter 10

Basic Datatypes
In This Chapter
� Processing numeric data

� Working with DATE and TIMESTAMP datatypes

� Using the BOOLEAN datatype

� Working with characters and strings

A datatype is a construct that defines the storage format, constraints, and
range limitations of constants, parameters, and variables. In addition to

all the datatypes available in SQL (for example, NUMBER, VARCHAR2, DATE,
and so on), PL/SQL includes some variations on these datatypes as well as
some additional types not available in SQL. This chapter provides an
overview of the basic datatypes that PL/SQL supports.

Introducing the Main Datatype Groups
In previous chapters, you use a number of built-in PL/SQL datatypes. There
are four main groups:

� Scalar datatypes represent single values that can’t be divided into parts.
Scalar datatypes are divided into families:

• Numeric datatypes encompass information that can be represented
as digits.

• Character datatypes are used for textual information (up to 32K).

• Date/time information is specified by using a group of datatypes
that allow you to store a timestamp of some event or time interval.

• Boolean datatypes are a common element of logical operations.

� Composite datatypes include internal components that can be manipu-
lated independently. (In Chapter 6, you use %ROWTYPE, which is an
example of the PL/SQL RECORD datatype.)

17_599577 ch10.qxp 5/1/06 12:23 PM Page 221

� References contain pointers to other program items.

� Large objects store or point to large amounts of textual or binary infor-
mation, such as images, movies, or books.

In this chapter, you find out about scalar datatypes. The other datatype groups
available in PL/SQL are covered in Chapter 11.

Working with Numeric Datatypes
Since the beginning of the computer era, many complex calculations have
been used to process scientific data that involved many numbers. This is the
reason that, historically, numeric datatypes have the widest and most com-
prehensive representation in most programming languages.

PL/SQL supports a large number of numeric datatype variations. However, as
a programmer, you’ll realistically only use a few of them: NUMBER, BINARY_
INTEGER/PLS_INTEGER (for versions lower than 9.2), and BINARY_FLOAT/
BINARY_DOUBLE. We describe each briefly in the following sections.

Using the NUMBER datatype
NUMBER is the most generic datatype. It is used to support all but the most
intensive scientific calculations. Numbers can have a maximum of 38 signifi-
cant digits. The syntax is simple, as shown here:

declare
variable1_nr NUMBER [(precision[, scale])];

...

Precision is the total number of digits in the number. The value of precision
can be between 1 and 38.

Scale is the number of digits to the right of the decimal point. Scale might
also be negative. In that case, rounding will take place to the left of the deci-
mal point. The value of scale can be between –84 and 127.

Both precision and scale are optional. Therefore, the NUMBER datatype is
overloaded to include three different numeric groups:

� Integers (you specify just precision) are between –1038 and 1038 not
including either of the bounds.

222 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 222

� Fixed-point values (you specify both precision and scale) are between
–10122 and 10122, not including either of the bounds and can be as small
as 10–127.

� Floating-point values (you don’t specify anything) are between –10130

and 10130, not including either of the bounds and can be as small as 10–127.

If you need to deal with numbers smaller than 10–38 or larger than 1038, you have
to use scientific notation (for example, 128000 should be written as 1.28E5).
Working with these very large and very small numbers is not very common and
it is unlikely that you will encounter them very often when working with PL/SQL.

Examples of all regular cases are shown in Listing 10-1.

Listing 10-1: NUMBER Datatype

declare
v1_nr NUMBER(10); -- integer ➞2
v2_nr NUMBER(10,0); -- also integer ➞3
v3_nr NUMBER(5,5); -- fixed point
v4_nr NUMBER(5,-3); -- also fixed point
v5_nr NUMBER; -- floating point

...

➞2–3 Both cases allow you to declare an integer variable because the
scale is set to 0, either explicitly or by default. If you try to assign
a real literal to that type of value, it is rounded to the nearest inte-
ger, as shown in Listing 10-2.

Listing 10-2: Assigning a Fraction to an Integer

SQL> declare
2 v1_nr NUMBER(10) := 2.567; ➞2
3 begin
4 DBMS_OUTPUT.put_line(‘v1_nr=’||v1_nr);
5 end;
6 /

v1_nr=3 ➞7
PL/SQL procedure successfully completed.
SQL>

Here are the details about Listing 10-2:

➞2 A real numeric literal is assigned to a variable defined as an
integer.

➞7 The output shows that the value was rounded.

223Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 223

Some basic examples of fixed-point variables are covered in Listing 10-3.

Listing 10-3: Setting Precision and Scale

SQL> declare
2 v1_nr NUMBER(5,2) := 123.567; ➞2
3 v2_nr NUMBER(5,-2) := 123.567; ➞3
4 begin
5 DBMS_OUTPUT.put_line(v1_nr||’ and ‘||v2_nr);
6 end;
7 /

123.57 and 100 ➞8
PL/SQL procedure successfully completed.
SQL>

Additional information about Listing 10-3 is shown here:

➞2 This line of code specifies a fixed-point number with 5-digit preci-
sion and positive scale of 2, and assigns a numeric literal to it with
3 digits before and after the decimal point.

➞3 Here you are specifying a fixed-point number with 5-digit precision
and negative scale of –2, and assigning a numeric literal to it with
3 digits before and after the decimal point.

➞8 If you specify positive precision, rounding occurs on the right side
of the decimal point to the required number of digits (123.567 was
rounded to 123.57). But if you specify negative precision, rounding
occurs on the left side of the decimal point (123.567 was rounded
to 100).

If you need to store floating-point data (for example, if you need to store a real
value of 2⁄3, unrounded) you can use the NUMBER datatype without specifying
either precision or scale. This allows you to work with numeric data without
fear that your data could be rounded. This is especially critical with financial
operations. An example using the NUMBER datatype is shown in Listing 10-4.

Listing 10-4: Using the NUMBER Datatype

SQL> declare
2 v1_nr NUMBER := 2/3; ➞2
3 v2_nr NUMBER(5,2):= 2/3; ➞3
4 begin
5 DBMS_OUTPUT.put_line(v1_nr*3||’ and ‘||v2_nr*3);
6 end;
7 /

2 and 2.01 ➞8
PL/SQL procedure successfully completed.
SQL>

224 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 224

Here’s is what’s going on in Listing 10-4:

➞2 Specifies a floating-point number without precision and scale, and
assigns the result of the division 2⁄3.

➞3 Specifies a fixed-point number with precision and scale, and
assigns the result of the division 2⁄3.

➞8 Output shows that using floating-point division and multiplication
didn’t change the number’s value. However, fixed-point operations
give a different result, because the floating-point value of 2⁄3 is
0.6666666 . . ., but the fixed-point value of 2⁄3 is 0.67.

Boosting performance with
BINARY_INTEGER
Although NUMBER is a convenient datatype, it isn’t always the most efficient.
Each digit in a NUMBER variable requires a single byte to be stored. That’s
why number 255 will use 3 bytes, even though in binary format, it requires
only 1 byte (255 decimal = 11111111 binary). Therefore, using NUMBER is a
waste of space (the default length is 38 bytes), especially if you store integer
values. Also, Oracle can use its highly optimized machine arithmetic only on
binary data. Otherwise, additional operations are required to transform
numeric information into machine-readable format.

To improve performance and reduce space consumption for tasks involving
massive processing of integer values, Oracle introduced the BINARY_
INTEGER datatype. The PLS_INTEGER datatype works in a similar way, but
is supported mostly for backward compatibility with Oracle versions prior
to 9.2. A simple declaration of these datatypes is shown here:

declare
variable1_nr BINARY_INTEGER;
variable2_nr PLS_INTEGER;

Beginning with Oracle 10g, these datatypes are interchangeable. In earlier
versions of Oracle, PLS_INTEGER provided better performance. Both of
these datatypes exist only in PL/SQL, and you cannot create a column of
these types.

BINARY_INTEGER variables are between –231 and 231. Because of this
datatype’s binary nature, it’s the fastest possible way of processing numeric
data in Oracle. However, because of its limited range (231 = 2,147,483,648), its
usage is a bit restrictive.

Listing 10-5 shows both NUMBER and BINARY_INTEGER datatypes.

225Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 225

Listing 10-5: NUMBER and BINARY_INTEGER Datatypes

SQL> set timing on ➞1
SQL> declare
2 v_nr number;
3 begin
4 for i in 1..1000000 loop
5 v_nr:=v_nr+i-i+i*2-i*2;
6 end loop;
7 end;
8 /

PL/SQL procedure successfully completed.
Elapsed: 00:00:00.35 ➞11
SQL> declare
2 v_nr binary_integer;
3 begin
4 for i in 1..1000000 loop
5 v_nr:=v_nr+i-i+i*2-i*2;
6 end loop;
7 end;
8 /

PL/SQL procedure successfully completed.
Elapsed: 00:00:00.09 ➞21
SQL>

Here are additional details about Listing 10-5:

➞1 This command turns on timing in order to measure execution
time. Some PL/SQL coding environments (such as SQL
Navigator) provide it automatically, but in SQL*Plus, it is set to
Off by default. In these cases, you need to use the SQL*Plus
command SET TIMING ON.

➞11, 21 These lines show the results of using BINARY_INTEGER.
Performance is significantly improved.

Using BINARY_FLOAT and
BINARY_DOUBLE for
complex calculations
If you have a program that needs to make high-speed scientific computations,
the BINARY_FLOAT and BINARY_DOUBLE datatypes offer significant perfor-
mance improvement over other datatypes.

You shouldn’t use BINARY_FLOAT and BINARY_DOUBLE datatypes for calcu-
lations where very high precision is required because they maintain only a
limited number of digits. As a result, some unexpected rounding might occur.

226 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 226

These datatypes can offer improved speed because they represent floating-
point numbers in IEEE 754-format. Behind the scenes, these datatypes behave
much like the native floating-point types on many hardware systems (4-byte
and 8-byte operations).

To illustrate the most efficient usage of BINARY datatypes, examine the pro-
cedure that calculates pi (π) with reasonable accuracy (currently set to
0.000001 for pi/4 – 0.0000004 for pi) using the Leibniz formulae.

create or replace function pi return number
as

last_pi number := 0;
delta number := 0.000001;
pi number := 1;
denom number := 3;
oper number := -1;
negone number := -1;
two number := 2;

begin
loop

last_pi := pi;
pi := pi + oper * 1/denom;
exit when (abs(last_pi-pi) <= delta);
denom := denom + two;
oper := oper * negone;

end loop;
return pi * 4;

end;

This procedure is taken from one of the discussions on http://asktom.
oracle.com, which is a very useful Web site for anyone working in the
Oracle environment.

You should try all three cases with variables of type NUMBER, BINARY_FLOAT,
BINARY_DOUBLE, and execute a basic SELECT PI FROM DUAL command.
The results are interesting to observe, as shown in the following table:

Type Time Output

NUMBER 1.30 3.14159465358579324446263938327350288021

BINARY_FLOAT 0.18 3.14159775

BINARY_DOUBLE 0.22 3.1415946535856922

It is clear that BINARY datatypes have a major performance impact, which is
even greater for BINARY_FLOAT. Because the number of decimal places for
binary datatypes is less than it is for the NUMBER datatype, you might be
forced to use a generic datatype for higher precision calculations.

227Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 227

Handling numeric datatypes
in built-in functions
PL/SQL supports the same built-in numeric functions as SQL. Most numeric
functions are accurate to 38 decimal places. Functions COS, COSH, EXP, LN,
LOG, SIN, SINH, SQRT, TAN, and TANH are accurate to 36 decimal digits.
Functions ACOS, ASIN, ATAN, and ATAN2 are accurate to 30 decimal digits.

Most built-in Oracle functions that work with numeric data can be over-
loaded to work with BINARY_DOUBLE and BINARY_FLOAT datatypes. But
sometimes, you might have to force them to use the appropriate datatypes,
as shown in the following examples, which calculate square roots:

Example 1:

SQL> declare
2 v_nr number;
3 begin
4 for i in 1..1000000 loop
5 v_nr:=sqrt(i);
6 end loop;
7 end;
8 /

PL/SQL procedure successfully completed.
Elapsed: 00:00:01.35

Example 2:

SQL> declare
2 v_nr binary_float;
3 begin
4 for i in 1..1000000 loop
5 v_nr:=sqrt(i);
6 end loop;
7 end;
8 /

PL/SQL procedure successfully completed.
Elapsed: 00:00:09.70

In the first case, the destination variable is type NUMBER, and the procedure
was completed in 1.35 seconds:

In the second case, the variable is type BINARY_FLOAT and the time is slower.
This change to BINARY_FLOAT slowed down the procedure to 9.7 seconds
because the loop variable i is, by definition, PLS_INTEGER. In the hierarchy
of automatic resolution of overload calls, Oracle picks up the version of SQRT
function to work with NUMBER rather than with BINARY_FLOAT because the
NUMBER datatype is higher in the resolution order (see Chapter 3 and Oracle
manuals for more details about resolving overloads). As a result, Oracle not

228 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 228

only uses a slower function, but afterward also has to implicitly convert the
result from NUMBER to BINARY_FLOAT, which takes more time.

To force the appropriate overload, you need to explicitly declare that you are
passing a variable of the appropriate datatype by using one of these two con-
version functions:

v_float_nr:= to_binary_float(numeric variable)
v_double_nr:= to_binary_double(numeric variable)

In each case, you should select the appropriate conversion function based on
the expected length and precision of the passed value. In the following exam-
ple, BINARY_FLOAT is enough, because the highest possible number is
1,000,000 and the performance improvement is obvious:

SQL> declare
2 v_nr binary_float;
3 begin
4 for i in 1..1000000 loop
5 v_nr:=sqrt(to_binary_float(i));
6 end loop;
7 end;
8 /

PL/SQL procedure successfully completed.
Elapsed: 00:00:00.48
SQL>

The conversion from NUMBER to BINARY_FLOAT/DOUBLE is not exact. Because
NUMBER data is rounded to a decimal point and BINARY data is rounded to a
binary value, differences at the rounding point could accumulate. So although
you could use BINARY datatypes to speed up high-end financial reports, these
datatypes shouldn’t be used for day-to-day accounting.

Keeping Track of Date and Time
Oracle provides three groups of datatypes (DATE, TIMESTAMP, INTERVAL) and
a number of built-in functions, which we describe in the following sections.

Selecting the info you want from DATE
Before Oracle 9i, only one datatype (DATE) allowed storing point-in-time
values (generic term which includes both date and time information),
because even now Oracle doesn’t have independent datatypes for just date
or just time, as in some other languages. Although Oracle has since added
other time-related datatypes, DATE is still considered the most convenient
and simple in that group.

229Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 229

The DATE datatype includes all the following information: century, year,
month, day, hour, minute, and second. Valid dates range from January 1, 4712
BC to December 31, AD 9999. Use the following code to declare the DATE
datatype:

declare
variable1_dt DATE;

...

Declaring a variable of datatype DATE is very simple. You don’t need to use
any other parameters. However, to take any part of information out of the
DATE variable, you need to use the TO_CHAR function with a date format, as
shown in Listing 10-6.

Listing 10-6: Displaying Date and Time

SQL> declare
2 v_dt DATE :=sysdate; ➞2
3 v_tx VARCHAR2(2000);
4 begin
5 v_tx:=to_char(v_dt,’mm/dd/yyyy’); ➞5
6 DBMS_OUTPUT.put_line(v_tx);

230 Part IV: PL/SQL Data Manipulations

DBMS_RANDOM
While you’re working with numeric datatypes,
you often need to generate some random
values. Oracle provides a built-in package
DBMS_RANDOM for this purpose. Although it
isn’t suited to cryptographic tasks, it’s fine for all
other purposes.

The two most important functions using
DBMS_RANDOM are as follows:

v_random_nr:= dbms_random.
random;

v_value_nr:= dbms_random.
value[(min, max)];

The first one returns a random integer value in
the range of –231 to 231. The second one gener-
ates a random value between the MIN and MAX
numbers passed as parameters (between 0 and
1 if parameters are omitted) with 38 digits after
the decimal point. Simple examples of each type
are shown here:

SQL> declare
2 v1_nr number:=dbms_
random.value(10,15);

3 v2_nr binary_
integer:=dbms_random.
random;

4 begin
5 DBMS_OUTPUT.put_line
(‘Float:’||v1_nr);

6 DBMS_OUTPUT.put_line
(‘Int:’||v2_nr);

7 end;
8 /

Float: 12.4996844577596455528
554463900590540428

Int: 963693078
PL/SQL procedure successfully

completed.
SQL>

17_599577 ch10.qxp 5/1/06 12:23 PM Page 230

7 v_tx:=to_char(v_dt,’hh24:mi’); ➞7
8 DBMS_OUTPUT.put_line(v_tx);
9 v_tx:=to_char(v_dt); ➞9
10 DBMS_OUTPUT.put_line(v_tx);
11 end;
12 /
02/12/2006
13:06
12-FEB-06
PL/SQL procedure successfully completed.
SQL>

The following are additional details about Listing 10-6:

➞2 The built-in function SYSDATE returns the current date and time
for the server on which the database resides.

➞5 Here you can see how to get just the date from the variable.

➞7 This line retrieves just the time, in military (24-hour) format.

➞9 No format mask is specified, so Oracle uses its default date format
from the database initialization parameter NLS_DATE_FORMAT
(‘DD-MON-RRRR’).

NLS stands for National Language Support, also known as Globalization
Support. NLS allows to you configure the database to conform to the require-
ments of countries that use different date and time formats. These settings
can be viewed in the NLS_SESSION_PARAMETERS and NLS_DATABASE_
PARAMETERS dictionary views.

Applying format masks
To display the date in a meaningful way, you need to use the TO_CHAR func-
tion, as shown here:

v_string_tx := to_char(DATE variable[,format mask])

TO_CHAR converts the date value into the string by using a specified format
mask. Table 10-1 shows the most commonly used formatting options.

Table 10-1 Commonly Used Format Masks
Format Meaning

Y, YY, YYYY, YYYY Year (from one to 4 digits)

RR, RRRR Rounded year (accepts 2- or 4-digit values and converts 2-
digit values into the appropriate century)

(continued)

231Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 231

Table 10-1 (continued)
Format Meaning

MM, MONTH, MON Month of the year, name of the month, abbreviated name

W, WW Week of the month, week of the year (not a calendar week,
because the first week starts at the 1st of the month/year
and ends at the 7th)

D, DD, DDDD Day of the week, day of the month, day of the year

DAY, DY Name of day (fixed length: 9 char), abbreviated name of day

HH, HH24 Hour of the day (1–12), hour of the day (0–23)

A.M./ AM Meridian indicator with or without periods

MI Minutes (0–59)

SS, SSSSS Seconds (0–59), seconds from midnight (0–86399)

You can use some characters as separators (for example, comma, dot, space,
and semicolon) within the format mask, but everything else has to be enclosed
in double quotes, as shown in Listing 10-7.

Listing 10-7: Using Format Masks

SQL> declare
2 v_dt DATE :=sysdate;
3 v_tx VARCHAR2(2000);
4 begin
5 v_tx:=to_char(v_dt,’”Today is”: DAY’); ➞5
6 DBMS_OUTPUT.put_line(v_tx);
7 end;
8 /

Today is: SUNDAY
PL/SQL procedure successfully completed.
SQL>

➞5 You can use the semicolon (:) without quotes, but the string
“Today is” must be inside the quotes.

You can reverse the process, using the TO_DATE function to convert string
values into date values by using an appropriate format mask (masks are the
same as in TO_CHAR), as shown here:

v_date_dt := to_date(string variable[,format mask])

The DATE format allows you to store everything from centuries to seconds.
You need to specify only the desired units, as shown in Listing 10-8.

232 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 232

Listing 10-8: Using the DATE Format Mask

SQL> declare
2 v_dt DATE;
3 v_tx VARCHAR2(2000);
4 begin
5 v_dt := to_date(‘19:40’,’HH24:MI’); ➞5
6 v_tx := to_char(v_dt,’YYYY-MM-DD HH24:MI:SS’);
7 DBMS_OUTPUT.put_line(v_tx);
8 v_dt := to_date(‘11-FEB-2006’,’DD-MON-YYYY’); ➞8
9 v_tx := to_char(v_dt,’YYYY-MM-DD HH24:MI:SS’);
10 DBMS_OUTPUT.put_line(v_tx);
11 end;
12 /
2006-02-01 19:40:00
2006-02-11 00:00:00
PL/SQL procedure successfully completed.
SQL>

Understanding the defaults
Oracle uses the following rules to set default values:

➞5 A missing date defaults to the first day of the current month.

➞8 A missing time defaults to midnight of the day.

Other rules include:

� A missing year or month defaults to the current year or month.

� A missing day defaults to the first day of the month used (either current
or specified).

� Missing hours, minutes, or seconds default to 00 value.

Validating format masks
Oracle can’t detect format mask errors when compiling PL/SQL. Even if
you’ve used an invalid format mask, the procedure or function will success-
fully compile. It fails only at runtime, as shown in Listing 10-9.

Listing 10-9: A Format Mask Failure

SQL> create or replace procedure p_format
2 is
3 v_dt DATE :=sysdate;
4 v_tx VARCHAR2(2000);
5 begin
6 v_tx:=to_char(v_dt,’Today is: DAY’); ➞6
7 DBMS_OUTPUT.put_line(v_tx);
8 end;

(continued)

233Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 233

Listing 10-9 (continued)
9 /

Procedure created.
SQL> exec p_format
BEGIN p_format; END;
*
ERROR at line 1:
ORA-01821: date format not recognized ➞15
ORA-06512: at “SCOTT.P_FORMAT”, line 6
ORA-06512: at line 1
SQL>

Here are some additional details about Listing 10-9:

➞6 There are no double quotes around the string “Today is” in the
format mask, but the procedure is still successfully created.

➞15 If you try to run the procedure P_FORMAT, you get the Oracle error.

Be sure to check format masks carefully for validity. It is significantly easier
to review your code during design than to figure out why the whole module
fails at runtime.

Using TIMESTAMP
Although the DATE datatype has been used for years, it has a number of limi-
tations. That is why Oracle introduced the TIMESTAMP datatype, which we
discuss here.

Simple TIMESTAMP allows you to specify fractions of a second. (DATE preci-
sion is limited to seconds.) You can declare this datatype as shown here:

declare
variable1_ts TIMESTAMP[(precision)];

...

This feature can be very useful if you need more detailed information on
sequential processing because now you can order events which occur in the
same second. By default, Oracle stores 6 digits of precision, but you can spec-
ify precision within the range from 0 to 9. TIMESTAMP(0) is equivalent to
DATE. Listing 10-10 shows how to declare the TIMESTAMP datatype.

Listing 10-10: Declaring TIMESTAMP Datatype

SQL> declare
2 v_ts TIMESTAMP(6):=systimestamp; ➞2
3 v_tx VARCHAR2(2000);
4 begin

234 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 234

5 v_tx:=to_char(v_ts,’HH24:MI:SS.FF6’); ➞5
6 DBMS_OUTPUT.put_line(v_tx);
7 end;
8 /

15:39:51.812000
PL/SQL procedure successfully completed.
SQL>

Listing 10-10 works as shown here:

➞2 To initialize the variable, you use SYSTIMESTAMP, not SYSDATE.

➞5 The new format mask element FF[1-9] represents fractions of a
second. If you specify fewer digits than are stored, Oracle uses the
same rounding technique as for floating-point numeric data.

Using TIMESTAMP WITH TIME ZONE
Another limitation of the DATE datatype is that even though you have a point-
in-time value, storing the time zone in which it was created is impossible. You
can explicitly store the time zone for TIMESTAMP datatypes, as shown here:

declare
variable1_ts TIMESTAMP[(precision)] WITH TIME ZONE;

...

Oracle can detect the time zone of both database server and the client
computer. You can see these values yourself by using the built-in functions
DBTIMEZONE and SESSIONTIMEZONE, as shown in Listing 10-11.

Listing 10-11: Declaring Time Zone Variables

SQL> declare
2 v_ts TIMESTAMP(6) WITH TIME ZONE ➞2
3 :=CURRENT_TIMESTAMP; ➞3
4 v_tx VARCHAR2(2000);
5 begin
6 v_tx:=to_char(v_ts,’HH24:MI:SS.FF6 TZR’); ➞6
7 DBMS_OUTPUT.put_line(v_tx);
8 v_tx:=to_char(v_ts,’TZH TZM’);
9 DBMS_OUTPUT.put_line(v_tx);
10 end;
11 /
17:50:42.828000 -05:00 ➞12
-05 00
PL/SQL procedure successfully completed.
SQL>

235Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 235

Here is some additional information about Listing 10-11:

➞2–3 The built-in function CURRENT_TIMESTAMP provides the timestamp
in the session (client) time zone but not the database time zone.

With Web-based applications, all database sessions occur between
the application server and the database server. As a result, you
can’t use the TIMESTAMP WITH ZONE datatype to capture client
region information because the client module is just a Web-browser,
which doesn’t have a dedicated connection to Oracle. It connects
only to the application server that resolves all client requests.

➞6 The format mask TZR returns the time zone region information.
Depending upon the database settings, it could be either the dif-
ference in hours and minutes between the session time zone and
the UTC (Coordinated Universal Time, formerly Greenwich Mean
Time) or name of the region.

➞7 If you only need the time difference, you could also use TZH and
TZM, which return just hours and just minutes of difference.

➞12 This line shows the output of the command on line 6. For a com-
puter in the Eastern Standard Time zone, it is minus 5 hours.

If you have a system running across multiple time zones, storing the informa-
tion from CURRENT_TIMESTAMP allows you to determine that some activity
was happening at a precise moment of the client time. Otherwise, you don’t
have a way to differentiate between 3 p.m. Eastern and 3 p.m. Pacific.

Storing elapsed time with INTERVAL
Another useful datatype introduced in Oracle 9i to extend the functionality of
the DATE datatype is INTERVAL. Very often, you don’t need to store a point
in time, but the time elapsed between points in time, a duration.

For example, if you need to support phone cards services, you want to store
the day on which the call took place and the duration of the call, but you don’t
care about the exact start time and end time of each call. In that case, there is
not much difference between when each phone call started and when it ended.
The only information you’re interested in is how much time the person spent
on the call. Of course, you could always use two variables (start and end
date/time) or some other workaround like storing hours, minutes, and sec-
onds in independent numeric columns. But as an alternative, you can store
the interval itself, so it can be independently processed later, as shown here:

SQL> declare
2 v_start_ts TIMESTAMP:=
3 to_timestamp(‘14:00:00’,’HH24:MI:SS’);
4 v_end_ts TIMESTAMP:=
5 to_timestamp(‘15:12:24’,’HH24:MI:SS’);

236 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 236

6 v_delta_int INTERVAL DAY TO SECOND;
7 begin
8 v_delta_int:=v_end_ts-v_start_ts;
9 DBMS_OUTPUT.put_line(v_delta_int);
10 end;
11 /
+00 01:12:24.000000
PL/SQL procedure successfully completed.

INTERVAL includes two datatypes that allow you to set appropriate dura-
tions more precisely, as shown here:

declare
variable1_int INTERVAL YEAR[(precision)] TO MONTH;
variable2_int INTERVAL DAY[(precision)] to

SECOND[(precision)];
...

The INTERVAL YEAR TO MONTH datatype allows you to store and manipu-
late intervals of years and months. You can specify the number of digits in
years that you want to store (by default 2, available range is 0–4).

The INTERVAL DAY TO SECOND datatype allows you to store and manipu-
late intervals of days, hours, minutes, and seconds. In this case, day preci-
sion allows you to set the number of digits you want to store, and second
precision identifies the number of digits used to store fractions of seconds.

Working with dates and built-in functions
Oracle provides a number of built-in functions that are useful for working
with point-in-time values. We discuss the most commonly used functions in
the following sections.

EXTRACT
The EXTRACT function allows you to take a single part of a date/interval/time-
stamp (year only, month only, and so on, up to the second) as shown here:

v_nr:= EXTRACT (TYPE from DATE|TIMESTAMP|INTERVAL value);

EXTRACT always returns a numeric value, so if you need the text name of the
month, you should use TO_CHAR. But if you need to extract a month from the
date value, EXTRACT is faster and more efficient than TO_CHAR. A basic exam-
ple is shown here:

SQL> declare
2 v_nr number;
3 begin
4 v_nr:=EXTRACT(MONTH from sysdate);

237Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 237

5 DBMS_OUTPUT.put_line(v_nr);
6 end;
7 /

2
PL/SQL procedure successfully completed.
SQL>

The possible types you can pass into EXTRACT are YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND. You can also use time zone types with timestamps.

As a good PL/SQL coding technique, using EXTRACT is strongly recommended.
Although you can get the same results by using TO_CHAR (for example, TO_
CHAR(SYSDATE,’MM’)),it is harder to detect a problem if you mistype a
format mask.

TRUNC and ROUND
The TRUNC and ROUND built-in functions, typically applied to numbers, also
work with dates and timestamps exactly as if they were numbers. The TRUNC
function truncates the date to some level of precision, whereas ROUND rounds
the date to a specified point:

v_dt:= TRUNC (DATE|TIMESTAMP|INTERVAL value[,PRECISION]);
v_dt:= ROUND (DATE|TIMESTAMP|INTERVAL value[,PRECISION]);

Rather than numeric precision, here you use date format masks (refer to Table
10-1). For example, ‘YYYY’ truncates the date to years, and ‘MM’ to a month.
If you don’t specify any precision, the default is day (‘DD’). You can’t specify
a combination of format masks. Only one can be specified at a time. An exam-
ple of using the TRUNC and ROUND functions is shown in Listing 10-12.

Listing 10-12: Using TRUNC and ROUND Built-In Functions

SQL> declare
2 v_dt DATE;
3 v_form_tx VARCHAR2(25):=’YYYY-MM-DD HH24:MI:SS’;
4 begin
5 v_dt:=trunc(sysdate); ➞5
6 DBMS_OUTPUT.put_line(to_char(v_dt,v_form_tx));
7 v_dt:=trunc(sysdate,’YYYY’); ➞7
8 DBMS_OUTPUT.put_line(to_char(v_dt,v_form_tx));
9 v_dt:=round(sysdate,’HH’); ➞9
10 DBMS_OUTPUT.put_line(to_char(v_dt,v_form_tx));
11 end;
12 /
2006-02-12 00:00:00
2006-01-01 00:00:00
2006-02-12 19:00:00
PL/SQL procedure successfully completed.
SQL>

238 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 238

The following information is relevant to Listing 10-12:

➞5 TRUNC without a format mask rounds the current date to midnight.

➞7 The same call with a ‘YYYY’ format mask rounds to midnight of
the new year.

➞9 ROUND with format ‘HH’ rounds the date to the beginning of the
hour.

TRUNC (value,’W’) is the easiest way of getting the first day of the week.

Here’s another extremely critical detail to remember about dates: If the time
isn’t going to be significant and you want to use queries that sort rows in the
database by a particular date, always truncate the date.

A reasonable alternative would be to build a function-based index (see the
Oracle manuals) on TRUNC(value). This provides you with a perfect mecha-
nism to improve performance on search requests where time is not signifi-
cant, but you still want to store time for other kinds of requests.

ADD_MONTHS
Because the lengths of months differ, working with precisions higher than
days isn’t all that simple. Twenty-nine days could be more than one month,
less than one month, or equal to one month, depending upon the month and
year. Oracle makes your life easier by supporting a number of functions to
help in this area: ADD_MONTHS, MONTHS_BETWEEN, and LAST_DAY. The
ADD_MONTHS function adds a number of months to the specified date:

v_dt:= ADD_MONTHS(date,integer);

Listing 10-13 shows how ADD_MONTHS might be used.

Listing 10-13: Using ADD_MONTHS

SQL> declare
2 v_dt DATE;
3 v_form_tx VARCHAR2(25):=
4 ‘DD-MON-YYYY HH24:MI:SS’;
5 begin
6 v_dt:=add_months(sysdate,1); ➞6
7 DBMS_OUTPUT.put_line(to_char(v_dt,v_form_tx));
8 v_dt:=add_months(to_date(‘030130’,’RRMMDD’),1); ➞8
9 DBMS_OUTPUT.put_line(to_char(v_dt,v_form_tx));
10 end;
11 /
12-MAR-2006 19:13:51 ➞12
28-FEB-2003 00:00:00 ➞13
PL/SQL procedure successfully completed.
SQL>

239Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 239

Here are the details for the preceding code:

➞6 This code adds one month to the current day.

➞8 This code adds one month to January 30, 2003.

➞12 As a result of the first operation, you have the date with the same
time, but one month ahead.

➞13 The second operation is significantly more interesting because
you’re adding a month to a date that doesn’t exist in the resulting
month. (There is no such thing as February 30). In that case, Oracle
returns midnight of the last day of the resulting month. This behav-
ior is the most important reason to use ADD_MONTHS. Otherwise, if
you just added 30 days, you would get a date in March.

LAST_DAY
The LAST_DAY function retrieves the last day of the month in the specified date.

v_dt:= LAST_DAY (date);

An example of using the LAST_DAY function is shown in Listing 10-14.

Listing 10-14: Using LAST_DAY

SQL> declare
2 v_dt DATE;
3 v_form_tx VARCHAR2(25):=
4 ‘DD-MON-YYYY HH24:MI:SS’;
5 begin
6 v_dt:=last_day(sysdate);
7 DBMS_OUTPUT.put_line(to_char(v_dt,v_form_tx));
8 end;
9 /

28-FEB-2006 19:21:55 ➞10
PL/SQL procedure successfully completed.
SQL>

➞10 Remember that even though you’re getting the last day of the
month, time will be preserved.

Don’t forget to truncate the date if you need midnight of the last day of the
month.

MONTHS_BETWEEN
The MONTHS_BETWEEN function is shown here:

v_nr:= MONTHS_BETWEEN(date1,date2);

240 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 240

This function returns the number of months between two dates. If this differ-
ence is not exact, you get a floating-point number where the decimal portion
represents the fraction N/31 where N is the number of remaining days. If
SYSDATE were near the beginning of February, you would get results similar
to those shown here:

SQL> declare
2 v_nr number;
3 begin
4 v_nr:=months_between(sysdate,trunc(sysdate,’Y’));
5 DBMS_OUTPUT.put_line(v_nr);
6 end;
7 /

1.3810748954599761051373954599761051374
PL/SQL procedure successfully completed.
SQL>

Because the number of months is represented by a floating-point number, you
could always figure out days, hours, minutes, and even seconds from the result,
but this technique isn’t recommended. Use INTERVAL datatypes instead.
Normally, the result of this function is either rounded or truncated as needed.

Storing Logical Values with BOOLEAN
PL/SQL has a BOOLEAN datatype to store logical condition values: TRUE,
FALSE, or NULL. You declare it as shown here:

declare
variable1_b BOOLEAN;

...

Because there is no corresponding SQL datatype, you cannot use Boolean
variables outside of pure PL/SQL. For example, you can declare a function
that would return a Boolean value, but you can’t use that function in SQL
code. Also, not all the built-in functions (like TO_CHAR) or built-in packages
understand the BOOLEAN datatype.

Boolean variables can be assigned either directly by using values TRUE, FALSE,
or NULL or as the results of logical expressions, as shown in Listing 10-15.

Listing 10-15: Assigning Boolean Variables

declare
v_b BOOLEAN:=false; ➞2

begin
v_b:=extract(year from sysdate)>2000; ➞4
if v_b

(continued)

241Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 241

Listing 10-15 (continued)
then

DBMS_OUTPUT.put_line(‘21st Century!’);
end if;

end;

Here are the details for code listing 10-15:

➞2, 4 Be careful to use values, not strings and no quotes for results of
logical expressions.

You can use Boolean variables for all conditional structures (IF,
CASE, EXIT WHEN, and so on).

➞4 There was no need to include v_b = TRUE because the result of
the comparison will also be a Boolean value, so using it would be
redundant.

Processing Characters and Strings
Although early computers processed mostly numeric information, significantly
more textual data is represented in the current data processing environment.

Textual information consists of the set of alphanumeric characters used to
store any data that can be defined by them. Because this is the least restric-
tive data format, you can easily store textual or numeric information in one
form or the other.

Depending upon the programming language you’re using and the native lan-
guage whose strings you plan to store in the database, you might have a ratio
of 1:1, 1:2, or 1:3 between characters and the number of bytes required to
store them. (Working with multibyte character sets such as Chinese is
beyond the scope of this book.)

Limiting variable length with
CHAR versus VARCHAR2
Historically, the first character datatype had a fixed length. In the Oracle world,
it is called CHAR(N) where N is the maximum number of characters. If the actual
value is shorter than the defined length, Oracle pads the value with blanks to
reach the required length. You can declare this datatype as shown here:

declare
variable1_tx CHAR(number of characters);

...

242 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 242

In SQL, the maximum length of the CHAR datatype is limited to 2,000 whereas
in PL/SQL, the maximum length is 32,767 bytes. Listing 10-16 shows some
ways to use CHAR.

Listing 10-16: Using the CHAR Datatype

SQL> declare
2 v_tx char(5);
3 begin
4 v_tx:=’A’; ➞4
5 DBMS_OUTPUT.put_line(length(v_tx));
6 DBMS_OUTPUT.put_line(‘<’||v_tx||’>’);
7 v_tx:=’A ‘; ➞7
8 DBMS_OUTPUT.put_line(length(v_tx));
9 DBMS_OUTPUT.put_line(‘<’||v_tx||’>’);
10 end;
11 /
5 ➞12
<A > ➞13
5
<A >
PL/SQL procedure successfully completed.
SQL>

The following details further explain Listing 10-16:

➞4 This line of code assigns the fixed-length variable V_TX a literal
with just one letter ‘A’.

➞7 This code tries to assign a 3-character string with a single letter
and 2 spaces. The result is a bit surprising because after the
assignment, there is no way to differentiate both cases. Strings
are treated the same way, as shown here:

SQL> declare
2 v_tx char(5);
3 begin
4 v_tx:=’A’;
5 if v_tx = ‘A’ and v_tx = ‘A ‘
6 then
7 DBMS_OUTPUT.put_line(‘Equal!’);
8 end if;
9 end;
10 /
Equal!
PL/SQL procedure successfully completed.
SQL>

➞12–13 Oracle uses all defined characters. The output shows that the
total length is 5 characters with 4 blanks on the right.

The CHAR datatype allows you to precisely define the amount of memory that
your variables use. However, CHAR comes with drawbacks. You cannot tell

243Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 243

the amount of meaningful data in the variable, nor can you use values with
trailing spaces because those spaces are impossible to detect afterwards.

To overcome the problems of fixed-length variables, Oracle introduced the
variable-length datatype VARCHAR2(N). Now you can declare the maximum
possible length of the string that can be stored in the variable, but the actual
string will not be padded in any way. The maximum length of a string declared
as VARCHAR2 is also 32,767 bytes (with a SQL restriction of 4,000 bytes), as
shown here:

declare
variable1_tx VARCHAR2(number of characters);

...

The VARCHAR2 datatype has a number of advantages. First, you can be sure
that you’ll end up with exactly what you placed in the variable. Second, you
can now detect the actual amount of data you’re working with. The following
code takes the previous example and changes the datatype:

SQL> declare
2 v_tx VARCHAR2(5);
3 begin
4 v_tx:=’A’;
5 DBMS_OUTPUT.put_line(length(v_tx));
6 DBMS_OUTPUT.put_line(‘<’||v_tx||’>’);
7 v_tx:=’A ‘;
8 DBMS_OUTPUT.put_line(length(v_tx));
9 DBMS_OUTPUT.put_line(‘<’||v_tx||’>’);
10 end;
11 /
1
<A>
3
<A >
PL/SQL procedure successfully completed.
SQL>

These two cases provide completely different results, exactly as intended.

Useful character built-in functions
Oracle provides a number of built-in functions to work with text data.

CHR and ASCII
These functions are opposites. CHR(code) returns a character from the
current character set identified by its binary equivalent, whereas ASCII
(character) returns the binary equivalent of the character passed into the
function, as shown in Listing 10-17.

244 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 244

Listing 10-17: CHR and ASCII Built-In Functions

SQL> declare
2 v_nr number;
3 v_tx char(1);
4 begin
5 v_nr:=ascii(‘A’); ➞5
6 DBMS_OUTPUT.put_line(v_nr);
7 v_tx:=chr(v_nr); ➞7
8 DBMS_OUTPUT.put_line(v_tx);
9 end;
10 /
65 ➞11
A ➞12
PL/SQL procedure successfully completed.
SQL>

Here are additional details about Listing 10-17:

➞5, 11 These lines of code show a binary representation of the character
‘A’ via the function ASCII.

➞7, 12 This code applies the function CHR to the binary representation of
a character and returns the character representation (‘A’).

From our experience, the most useful character specifications are

� CHR(10): Line feed

� CHR(13): Carriage return

� CHR(9): Tab

CHR(10) and CHR(13) usually implement the “next line” command. In some
cases, just CHR(10) is enough. CHR(9) uses the default tab spacing of the
current text environment. Using these characters makes generating strings to
be displayed significantly easier, as shown here:

SQL> begin
2 DBMS_OUTPUT.put_line(‘Line#1’||
3 chr(10)||chr(9)||’Line#2’);
4 end;
5 /

Line#1
Line#2

PL/SQL procedure successfully completed.
SQL>

SUBSTR and INSTR
Knowledge of the SUBSTR (substring) and INSTR (instring) functions is
important for everyone working with strings either in SQL or PL/SQL.

245Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 245

SUBSTR is needed if you want to retrieve part of existing string, as shown
here:

v_tx:= substr(string, start position[,number of chars]);

The start position could be either a positive or negative integer. This would
start counting the position from the beginning or from the end of the string,
as shown here:

SQL> declare
2 v1_tx VARCHAR2(5):=’ABCDE’;
3 v2_tx VARCHAR2(5);
4 begin
5 v2_tx:=substr(v1_tx,2);
6 DBMS_OUTPUT.put_line(v2_tx);
7 v2_tx:=substr(v1_tx,-2);
8 DBMS_OUTPUT.put_line(v2_tx);
9 end;
10 /
BCDE
DE
PL/SQL procedure successfully completed.
SQL>

As shown in these examples, you can omit the third parameter (requested
number of characters). In that case, Oracle returns everything from the point
you specified to the end of the string. If your starting point is more than the
total number of characters in the string, Oracle returns NULL.

The number of characters requested from the string might not always be the
length of the resulting string. It could be less, because you might request more
characters than the string has. In that case, Oracle just returns everything up
to the end of the string, as shown in Listing 10-18.

Listing 10-18: Using SUBSTR

SQL> declare
2 v1_tx VARCHAR2(5):=’ABCDE’;
3 v2_tx VARCHAR2(5);
4 begin
5 v2_tx:=substr(v1_tx,2,2); ➞5
6 DBMS_OUTPUT.put_line(v2_tx);
7 v2_tx:=substr(v1_tx,2,7); ➞7
8 DBMS_OUTPUT.put_line(v2_tx);
9 end;
10 /
BC ➞11
BCDE ➞12
PL/SQL procedure successfully completed.
SQL>

246 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 246

Additional information about Listing 10-18 is shown here:

➞5, 11 The code works perfectly because you requested two characters
and two characters were returned.

➞7, 12 This line requested 7 characters, and 4 were returned because
only 5 characters were in the original string.

The function INSTR allows you to locate one string/character in the other
one. You can declare it as shown here:

v_nr:= instr(string,substring[,position,occurrence]);

At the simplest level, INSTR returns the number of characters in the original
string where the desired substring starts. But you can also specify the posi-
tion from which you want the search to start (by default from the first charac-
ter) and what occurrence of the desired string is required (by default, the
first one), as shown in Listing 10-19.

Listing 10-19: Using INSTR

SQL> declare
2 v1_tx VARCHAR2(20):=’Hello, World!’;
3 v_nr binary_integer;
4 begin
5 v_nr:= instr (v1_tx,’l’); ➞5
6 DBMS_OUTPUT.put_line(v_nr);
7 v_nr:= instr (v1_tx,’l’,-2); ➞7
8 DBMS_OUTPUT.put_line(v_nr);
9 v_nr:= instr (v1_tx,’l’,2,2); ➞9
10 DBMS_OUTPUT.put_line(v_nr);
11 end;
12 /
3 ➞13
11 ➞14
4 ➞15
PL/SQL procedure successfully completed.
SQL>

Listing 10-19 works as shown here:

➞5, 13 There are three occurrences of the letter ‘l’ in the original string.
In the first case, you’re getting the position of first letter starting
from the beginning (default).

➞7, 14 These lines of code retrieve the first occurrence of the letter ‘l’
starting from the second character at the end in reverse order.
You can have both positive and negative starting positions as in
SUBSTR, but here it means not only the starting point, but also the
direction of the search.

247Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 247

➞9, 15 These lines get the second occurrence of the letter ‘l’, starting
from the second character.

You’ll often use both SUBSTR and INSTR at the same time, especially for
parsing text. For example, to print out the last word in the string, you can use
the following code:

SQL> declare
2 v1_tx VARCHAR2(20):=’Hello to everybody’;
3 v2_tx VARCHAR2(20);
4 begin
5 v2_tx:= substr (v1_tx, instr (v1_tx,’ ‘,-1)+1);
6 DBMS_OUTPUT.put_line(v2_tx);
7 end;
8 /

everybody
PL/SQL procedure successfully completed.
SQL>

Even though this is an oversimplified case (you are taking everything from
the last blank character to the end), it is absolutely correct. First, you need to
find the position of the last space character by using INSTR, and second, you
need to use SUBSTR to grab the rest of the string — starting with the next
character from the one you found and going to the end of the original string.

REPLACE and TRANSLATE
The REPLACE and TRANSLATE functions allow you to transform text by using
the specified pattern shown here:

v_tx:= replace(string,search[,replacement]);
v_tx:= translate(string, search, replacement);

Although these functions look similar, there is a major difference. The
REPLACE function changes one string to another string, as shown here:

SQL> declare
2 v1_tx VARCHAR2(20):=’To be or not to be’;
3 v2_tx VARCHAR2(20);
4 begin
5 DBMS_OUTPUT.put_line(‘Before: ‘ || v1_tx);
6 v2_tx:= replace (v1_tx,’be’,’eat’);
7 DBMS_OUTPUT.put_line(‘After: ‘ || v2_tx);
8* end;
9 /

Before: To be or not to be
After: To eat or not to eat
PL/SQL procedure successfully completed.
SQL>

248 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 248

If you don’t specify the third parameter, Oracle just removes all occurrences
of the search string. This is very useful if you want to remove all the spaces
from the text.

The TRANSLATE function takes search and replacement strings and creates
character-to-character maps (the first character from the search string
should be replaced with first character from the replacement string, and so
on), as shown here:

SQL> declare
2 v1_tx VARCHAR2(20):=’To be or not to be’;
3 v2_tx VARCHAR2(20);
4 begin
5 v2_tx:= translate (v1_tx,’bo ‘,’BO’);
6 DBMS_OUTPUT.put_line(v2_tx);
7 end;
8 /

TOBeOrnOttOBe
PL/SQL procedure successfully completed.
SQL>

If you have more characters in the source string than in the replacement
string, those characters are removed. As in the example, because the replace-
ment string has only two characters, the third character from the source
string is gone. No spaces appear in the result.

With the TRANSLATE function, the third parameter (the replacement charac-
ters) can’t be NULL or an empty string. Otherwise, the result is always NULL.

*PAD and *TRIM
A number of functions allow you to either add (PAD) or remove (TRIM) char-
acters to an existing string: LPAD/LTRIM do it from the left side of the string,
RPAD/PTRIM from the right side. Also, a wrapper function, TRIM, allows you
to select the trimming mode (left side – leading /right side – trailing /both) as
shown in Listing 10-20.

Listing 10-20: Using LPAD and LTRIM

v_tx:= lpad(string,length,extra string);
v_tx:= ltrim(string [,character]);
v_tx:= trim(LEADING|TRAILING|BOTH character from string);

SQL> declare
2 v1_tx VARCHAR2(20):=’Hello!’;
3 v2_tx VARCHAR2(20);
4 v3_tx VARCHAR2(20);
5 begin

(continued)

249Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 249

Listing 10-20 (continued)
6 v2_tx:= rpad(lpad(v1_tx,10,’*’),15,’*’); ➞6
7 DBMS_OUTPUT.put_line(v2_tx);
8
9 v3_tx:= trim (both ‘*’ from v2_tx); ➞9
10 DBMS_OUTPUT.put_line(v3_tx);
11 v3_tx:= trim (leading ‘*’ from v2_tx); ➞11
12 DBMS_OUTPUT.put_line(v3_tx);
13 v3_tx:= trim (trailing ‘*’ from v2_tx); ➞13
14 DBMS_OUTPUT.put_line(v3_tx);
15 end;
16 /
****Hello!*****
Hello!
Hello!*****
****Hello!
PL/SQL procedure successfully completed.
SQL>

Here’s what you see in Listing 10-20:

➞6 This code pads the original string with * from the left and right
sides.

➞9 This code represents the most popular way of using the function
TRIM by trimming specified character from both sides.

➞11 This code represents trimming of leading characters using exactly
the same functionality as LTRIM.

➞13 This code represents trimming of trailing characters using exactly
the same functionality as RTRIM.

Unless you are using Oracle 8i, the TRIM function is recommended instead of
the older LTRIM/RTRIM because it provides greater flexibility and readability
of the code.

Extending your options with
regular expressions
In 10g, Oracle introduced regular expressions, which allow you to search for
patterns in string data by using a very rich syntax. This syntax is becoming
standard throughout the IT industry.

Regular expressions cannot be used as parameters in the standard Oracle
built-in text search functions: LIKE, SUBSTR, INSTR, and REPLACE. Instead,

250 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 250

regular expressions have their own versions of the same functions: REGEXP_
LIKE, REGEXP_SUBSTR, REGEXP_INSTR, and REGEXP_REPLACE.

As an example, in regular expressions, the special character | defines an OR
condition for the characters surrounding it, as shown here:

SQL> declare
2 v1_tx VARCHAR2(2000):=’*ABC*BBC*’;
3 begin
4 DBMS_OUTPUT.put_line(‘First hit:’||
5 REGEXP_INSTR(V1_TX,’A|BBC’,1,1)); ➞5
6 DBMS_OUTPUT.put_line(‘Second hit:’||
7 REGEXP_INSTR(V1_TX,’A|BBC’,1,2)); ➞7
8 end;
9 /

First hit:2
Second hit:6
PL/SQL procedure successfully completed.

➞5, 7 These lines search for either ‘ABC’ or ‘BBC’ in the specified
string.

A detailed discussion of regular expressions is beyond the scope of this book,
If you need to perform advanced processing of textual information, a good
place to start is Oracle Regular Expressions Pocket Reference, by Jonathan
Gennick and Peter Linsley (O’Reilly).

251Chapter 10: Basic Datatypes

17_599577 ch10.qxp 5/1/06 12:23 PM Page 251

252 Part IV: PL/SQL Data Manipulations

17_599577 ch10.qxp 5/1/06 12:23 PM Page 252

Chapter 11

Advanced Datatypes
In This Chapter
� Working with large objects (LOBs)

� Enforcing standards with user-defined subtypes

� Defining datatypes

� Creating collections

� Collecting data with bulk operations

To be able to handle many of the complex programming situations that
can arise in building database systems, Oracle includes some advanced

datatypes and ways to handle large objects, user-defined types and subtypes,
and collections.

It is important to understand how to use these datatypes correctly and effi-
ciently in your code, and in the sections in this chapter, we show you how.

Handling Large Objects in the Database
Less-experienced database professionals might think that the three major
datatypes (DATE, NUMBER, VARCHAR2) are enough to build most systems.
However, this is rarely the case. In modern systems, you might want to store
pictures, movies, documents, and sounds. The basic Oracle character
datatype (VARCHAR2) can hold only 4,000 characters (about the size of a
page of text).

Imagine that you want to create an online shopping catalog of electronic
goods. Each record should contain the name of the item, the full text of the
user manual, a picture of the front page of the manual, and a reference to the
original text file with the manual stored on the server.

Oracle technology provides the solution to this problem with a class of
datatypes designed to store up to 8-128TB of binary/textual information.
These datatypes are called LOBs (or large objects). However, in some cases,
(depending upon the environment) you are restricted to 4GB.

18_599577 ch11.qxp 5/1/06 12:15 PM Page 253

When using large objects, the issues of performance and storage always
arise. To address these concerns, Oracle provides two options:

� You can store the large objects internally, within the database itself
(called internal large objects in this book). If you store large objects in
the database, they can be retrieved quickly, and you don’t have to worry
about managing individual files. However, with these objects in the data-
base, the database will get very large. If you don’t use a good backup
utility, it can take hours (or even days) to do a full database backup.

� You can keep the objects in the file system and just store the filenames
in the database (external large objects). Storing large objects in the file
system has its own risks. Some operating systems perform very slowly
when thousands of files are in a single directory. And you have to worry
about people moving, deleting, or otherwise changing the contents of
the objects outside your database-based programs. The database is
restricted to read-only access to these objects.

Using internal large objects
(CLOB, BLOB)
With internal large objects, Oracle stores the data within the database.
However, the data is physically stored separately from the rest of the columns
in the table, and the table actually contains pointers to the data in the LOBs.
Two types of internal large objects exist:

� CLOB (character large object): The most common use of CLOBs is to
store large amounts of character (text) information.

� BLOB (binary large object): BLOBs are used to store binary (mostly
video/audio) information in the database.

When saying “CLOB” or “BLOB” out loud, some people say see-lob and bee-
lob, and others say klob and blob. You should be able to recognize either
pronunciation.

Creating pointers with
external large objects
With external large objects, the pointer (also called LOB locator) to the object
is stored in a BFILE column in the database. The pointer is an internal

254 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 254

reference that Oracle can understand, indicating the location where the real
data is stored (in that case to the file in file system). It provides read-only
access to files on the server. The most common use for BFILE is to provide a
convenient way of referencing objects maintained outside the database (for
example, a collection of photos).

Using the example of an online shopping catalog for electronic goods, you
can use the advanced datatypes to create a table, as shown here.

create table catalog
(item_id number,
name_tx VARCHAR2(2000),
manual_cl CLOB,
firstpage_bl BLOB,
mastertxt_bf BFILE);

The amount of information needed to work with large objects is beyond the
scope of this book. We provide some simple examples here, but you can find
more information in the Oracle Database Documentation library available
online in the section Oracle Database Application Developer’s Guide - Large
Objects of the OTN Web site (www.oracle.com/technology/index.html).

Working with Large Objects
The following sections explain the steps needed to create a system such as
the online catalog of electronic goods mentioned earlier.

Populating BFILE
Oracle accesses files on the server by using a directory, which is just a
pointer to an operating system folder. If you’re in a normal Oracle working
environment, your organization’s DBA will probably have to create a direc-
tory for you. Assuming that a folder C:\IO exists on your server, and you
want to call that folder IO within Oracle, the DBA would execute the follow-
ing SQL commands:

create directory IO as ‘C:\IO’;
grant read, write on directory IO to public;

Now, when you refer to IO in any commands, you’re referring to the C:\IO
folder in the file system.

255Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 255

To create a pointer to the file on the server and place that pointer in the table
on an existing record, use something like Listing 11-1.

Listing 11-1: Creating a Pointer

declare
v_bf BFILE; ➞2

begin
v_bf:=BFILENAME (‘IO’, ‘text.htm’); ➞4
insert into t_catalog ➞5
(item_id, name_tx, mastertxt_bf)

values (1, ‘TEXT.HTM’, v_bf); ➞7
end;

Here are the details about the preceding code:

➞2 Declares a variable of type BFILE to store a file pointer.

➞4 Creates a pointer to the text.htm file stored in C:\IO.

➞5–7 Inserts a row, including the mastertxt_bf column with the
pointer.

Loading data to the CLOB by using BFILE
CLOBs are very useful structures. You can store lots of text information in a
CLOB. Listing 11-2 shows how to read data from a file and place it in a CLOB
column.

Listing 11-2: Loading Data to a CLOB

declare
v_file_bf BFILE;
v_manual_cl CLOB;
lang_ctx NUMBER := DBMS_LOB.default_lang_ctx;
charset_id NUMBER := 0;
src_offset NUMBER := 1;
dst_offset NUMBER := 1;
warning NUMBER;

begin
update t_catalog ➞10
set manual_cl = EMPTY_CLOB() ➞11

where item_id = 1; ➞12

select mastertxt_bf, manual_cl ➞14
into v_file_bf, v_manual_cl
from t_catalog

where item_id = 1; ➞17

256 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 256

DBMS_LOB.fileopen
(v_file_bf, DBMS_LOB.file_readonly); ➞20

DBMS_LOB.loadclobfromfile (v_manual_cl,
v_file_bf,
DBMS_LOB.getlength (v_file_bf),
src_offset, dst_offset,
charset_id, lang_ctx,
warning);

DBMS_LOB.fileclose (v_file_bf); ➞27
end;

The following list provides additional details about Listing 11-2:

➞10–12 Oracle works with CLOBs via pointers. For this reason, you must
first update the field MANUAL_CL from NULL to EMPTY_CLOB().
This is a built-in function that creates a CLOB with a length of 0
bytes.

➞14–17 Now you have a real CLOB in the row (trying to reference NULL
won’t work) so you can retrieve its pointer into the local variable
V_MANUAL_CL. You’re also retrieving the pointer to the external
BLOB (BFILE) into the local variable V_FILE_BF.

➞14 The next part of the code involves a package that works with all
types of large objects — DBMS_LOB. Using the V_FILE_BF
pointer, you have access to the file.

➞20–27 These lines of code read the file content into the CLOB
V_MANUAL_CL. You can safely ignore some parameters in this
command most of the time: src_offset, dst_offset,
charset_id, and lang_ctx. Many of the things you can do
with these parameters will never be needed in most systems.

There is one very important detail to notice in the preceding example.
Although you’re working with the local variable, it is actually a pointer to the
real CLOB in the database. This means that all modifications to the CLOB that
are made by using the local pointer go directly to the table. This is the reason
why no update statements exist at the end of the routine. The text from the
file went directly to the appropriate column.

Loading a page to a BLOB
Continuing with the example of creating an online catalog for electronic
goods, imagine that you want to load an image that is the front page of a
manual to the database.

257Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 257

The process of loading a BLOB is similar to that of a CLOB, as shown in
Listing 11-3.

Listing 11-3: Loading a Page to the BLOB

declare
v_file_bf BFILE:= BFILENAME (‘IO’,’picture.gif’); ➞2
v_firstpage_bl BLOB;
src_offset_nr NUMBER := 1;
dst_offset_nr NUMBER := 1;

begin
update t_catalog ➞7
set firstpage_bl = EMPTY_BLOB()

where item_id = 1;

select firstpage_bl
into v_firstpage_bl
from t_catalog

where item_id = 1;

DBMS_LOB.fileopen (v_file_bf, DBMS_LOB.file_readonly);
DBMS_LOB.loadblobfromfile (v_firstpage_bl,

v_file_bf,
DBMS_LOB.getlength (v_file_bf),
dst_offset_nr, src_offset_nr);

DBMS_LOB.fileclose (v_file_bf);
end;

Here’s a bit more detail about Listing 11-3:

➞2 The BFILE pointer is created on the fly. The core logical flow is
the same:

• Initialize an empty LOB in the database.

• Get the pointer to the local variable.

• Modify the LOB via the pointer.

➞7 The changes from Listing 11-2 are minor. EMPTY_BLOB () cre-
ates a new CLOB pointer in the table.

Performing basic string
operations on CLOBs
You can use many regular string operations on CLOBs (search for the pat-
terns, get length, get part of the code, and so on) to create advanced applica-
tion logic. For example, you can implement a search or indexing routine for
all large text files loaded in the database exactly the same way as you would
for regular strings, as shown in Listing 11-4.

258 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 258

Listing 11-4: CLOB String Operations

declare
v_manual_cl CLOB;
v_nr NUMBER;
v_tx VARCHAR2 (2000);
v_add_tx VARCHAR2 (2000)
:=’Loaded: ‘||TO_CHAR(SYSDATE,’mm/dd/yyyy hh24:mi’);

begin
select manual_cl ➞8
into v_manual_cl
from t_catalog

where item_id = 1
for update; ➞12

DBMS_LOB.writeappend (v_manual_cl, ➞14
LENGTH (v_add_tx), v_add_tx); ➞15

v_nr := INSTR (v_manual_cl, ‘Loaded:’, -1); ➞17
v_tx := SUBSTR (v_manual_cl, v_nr);
DBMS_OUTPUT.put_line (v_tx);

end;

Keep in mind that LOB pointers are transaction dependent. This means that
if you have a COMMIT command in your code, the LOB pointer could become
invalid (not pointing to anything) and you may not be able to perform some
operations by using that locator.

In Listing 11-3 (populating the CLOB) a new pointer (EMPTY_CLOB()) was
created and retrieved to obtain the data via BFILE. Everything happened
within the same logical group called a transaction. For more about locks and
transactions, see Chapter 12.

➞8–12 The SELECT...FOR UPDATE method (which we discuss in
Chapter 6) guarantees that you’re the only person working with
the record at a given time.

➞14–15 Uses the writeappend built-in function to add text to the end of
an existing CLOB.

➞17 Searches for the string ‘Loaded’ starting from the end.

➞18 Prints out the remainder of the string.

Keeping Code Consistent with
User-Defined Subtypes

It is always a challenge to create and enforce standards for different teams
working on the same project. For example, one group might define large text

259Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 259

variables as VARCHAR2(2000) while another uses VARCHAR2(4000). These
types of inconsistencies can cause problems. However, Oracle can help resolve
these issues with a PL/SQL element called a subtype. The idea is that several
column “types” are agreed upon (for example, ShortString, LongString, or
Currency). Then all variables and database columns are defined by using only
those types. This way, you can enforce a certain level of consistency across the
system. The basic syntax for defining a subtype is simple:

declare
subtype newSubtype is standardType [NOT NULL];

In this case, you aren’t creating something new but simply adding restrictions
to the basic type. You can create subtypes in the declaration portions of pro-
cedures, functions, anonymous blocks, packages, or package bodies. You
could use something like the following code:

create or replace package pkg_global
is

subtype large_string is VARCHAR2(2000);
subtype medium_string is VARCHAR2(256);
subtype small_string is VARCHAR2(10);
subtype flag_yn is VARCHAR2(1) not null;

end;

Developers can now simply reference these subtypes in their code, as shown
in Listing 11-5.

Listing 11-5: Referencing Subtypes

declare
v_medium_tx pkg_global.medium_string;
v_small_tx pkg_global.small_string := ‘ABC’;
v_flag_yn pkg_global.flag_yn :=’N’;

begin
v_medium_tx:=v_small_tx||’-’||v_flag_yn;

end;

Defining Your Own Datatypes
The preceding section describes how you can create your own subtypes as
more specialized versions of existing Oracle datatypes. In addition, it is possi-
ble to create entirely new types. Some user-defined types are for PL/SQL only,
and some can be used in both PL/SQL and SQL.

You can create PL/SQL datatypes in the declaration portions of procedures,
functions, root anonymous blocks, package bodies, and package specs. The
basic syntax is shown here:

260 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 260

declare
type newType is definitionOfTheType;

You create SQL types by using a DDL operation with the following syntax:

Create type newType is definitionOfTheType;

The following sections describe several kinds of user-defined types. Records
are PL/SQL-only types, and you can use object types in PL/SQL or SQL.

Records
We discuss the record datatype in Chapter 6. The idea is to be able to store a
whole set of variables as one entity in a single variable (not as a number of
separate variables). By definition, a record is a group of related data items
stored in attributes, each with its own name and datatype. You can think of a
record as a locally stored row from the table with attributes rather than
columns.

Records types are used in PL/SQL code (for example, as parameters of func-
tions/procedures), but not in any SQL (views, table definitions, stored
datatypes, and so on).

A record type can be defined either explicitly or implicitly.

An explicit declaration means that you first define your own datatype and
then create a variable of that type, as shown in Listing 11-6.

Listing 11-6: Explicit Record Type

declare
type emp_ty is record (emp_tx VARCHAR2(256), ➞2

deptNo emp.deptNo%TYPE); ➞3
v_emp_rty emp_ty; ➞4

begin
select empNo||’ ‘||eName, deptNo into v_emp_rty ➞6
from emp ➞7

where empNo=7369;
DBMS_OUTPUT.put_line ➞9
(‘Emp:’||v_emp_rty.emp_tx||

‘(‘||v_emp_rty.deptno||’)’); ➞11
end;

Here are the details about the preceding code:

➞2, 3 These lines declare the type, which can contain one or more
fields. You can define the datatype of each field explicitly, exactly
the same as defining columns in a table (line 2), or by reference to

261Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 261

the type of a previously defined object, typically a column in a
table (line 3).

➞4 Declares the variable.

➞6 Fetches data from the implicit cursor into that variable.

➞7–9 Uses the new type.

As shown above, the way to reference fields in the record type variables is by
using variable.attribute (as in line 11).

An implicit declaration uses an existing table, view, or cursor as a reference. An
example is shown in Listing 11-7. (See Chapter 6 for additional information).

Listing 11-7: Implicit Declaration

declare
v_emp_rec emp%ROWTYPE; ➞2

begin
select * into v_emp_rec
from emp
where empNo=7369;

DBMS_OUTPUT.put_line(‘Emp:’||v_emp_rec.empNo||
‘’||v_emp_rec.eName||’(‘||v_emp_rec.deptNo||’)’);

end;

➞2 In this case, you don’t need your own datatype. You can reference
the existing record type of the employee, emp%ROWTYPE.

Using this approach, you’re always in sync with the database definitions.
However, the downside is that you must bring in the whole record even though
you might need only a couple columns. Therefore, you need to determine the
best approach on a case-by-case basis.

Assigning values in a record
You have a number of ways to assign values to fields in a variable defined as
a record. One way is to fetch data from the cursor. A second method is to use
a RETURNING INTO clause as shown next. If you want to be able to see what
you’re updating in an UPDATE statement, you can use the following code to
simultaneously update the record and see columns in the updated record:

declare
type emp_ty is record (emp_tx VARCHAR2(256),

deptNo emp.deptno%TYPE);
v_emp_rty emp_ty;

begin
update emp
set eName=eName||’*’

262 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 262

where empNo=7369
returning empNo||’ ‘||eName, deptNo
into v_emp_rty;
DBMS_OUTPUT.put_line
(‘Updated: ‘||v_emp_rty.emp_tx||

‘ (‘||v_emp_rty.deptNo||’)’);
end;

You can combine methods of assigning variable values in the same code sec-
tion, as shown in Listing 11-8.

Listing 11-8: Combining Ways of Assigning Variable Values

create or replace function f_generateNewEmp_rec
(i_deptno number)

return emp%ROWTYPE
is

v_emp1_rec emp%ROWTYPE;
begin

select max(empNo)+1
into v_emp1_rec.empNo ➞8
from emp; ➞9

v_emp1_rec.deptNo:=i_deptNo; ➞10
v_emp1_rec.eName:=’Emp#’||v_emp1_rec.empNo; ➞11
return v_emp1_rec;

end;
/
declare

v_emp_rec emp%ROWTYPE;
begin

v_emp_rec:=f_generateNewEmp_rec(10); ➞18
DBMS_OUTPUT.put_line
(‘Generated:’||v_emp_rec.empNo||’ ‘||v_emp_rec.eName);

end;
/

You can work directly with the fields of the record and not just with the
record as a whole.

➞8–9 Fetches data from an implicit cursor directly to the field
v_emp1_rec.empno.

➞10–11 Assigns values to the fields v_emp1_rec.deptno and v_emp1_
rec.ename in the same way as if they were regular PL/SQL
variables.

➞18 Retrieves a value for the record type variable from the function.

Variables can serve as input/output parameters.

263Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 263

The problem with using records as parameters is that they are just too big,
and they require a lot of memory.

Chapter 3 introduced the concept of passing a parameter by using NOCOPY.
This means that you are only passing a pointer to the variable rather than
copying the values, increasing performance, and decreasing memory usage.
NOCOPY is particularly useful when passing record variables (that may con-
tain hundreds of columns). An example showing how you can pass variables
without copying them is shown in Listing 11-9. This example passes in an
employee record and modifies that record by giving it a new number (one
higher than the highest number in the tables) and a fake name.

Listing 11-9: Passing Variables without Copying

create or replace procedure p_generateNewEmp
(io_emp in out nocopy emp%ROWTYPE) ➞2

is
begin

select max(empNo)+1
into io_emp.empNo
from emp;

io_emp.eName:=’Emp#’||io_emp.empNo;
end;
/
declare

v_emp_rec emp%ROWTYPE; ➞12
begin ➞13

v_emp_rec.deptNo:=10;
p_generateNewEmp(v_emp_rec); ➞15
DBMS_OUTPUT.put_line
(‘Generated:’||v_emp_rec.empNo||

‘ ‘||v_emp_rec.eName); ➞18
end;

Here are the details about Listing 11-9:

➞2 Because you defined the parameter in the procedure as NOCOPY,
no memory overhead existed because both variables were work-
ing with the same instance of the variable. For more explanation,
see Chapter 3.

➞12 Creates a variable in the main routine.

➞13–18 Passes the variable to the procedure (line 13) and returns it.

Oracle sequences should generally be used for getting the next number for an
identifying column, rather than the code shown here (lines 5 and 6).

With record variables, you can assign one record to another; doing so copies
all columns in the original record to the target. This powerful feature was

264 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 264

introduced in Oracle version 9. An example of copying an employee record is
shown in Listing 11-10.

Listing 11-10: Assigning Record Variables

declare
v_emp_rec emp%ROWTYPE;
v_empStart_rec emp%ROWTYPE;

begin
v_emp_rec.deptNo:=10;
p_generateNewEmp(v_emp_rec);
v_empStart_rec:=v_emp_rec; -- store original data ➞7
DBMS_OUTPUT.put_line(‘Generated: ‘||

v_empStart_rec.empNo||’ ‘||v_empStart_rec.eName);
p_processEmp(v_emp_rec); -- continue working

end;

➞7 Copies newly generated record for future comparisons.

You can use direct assignment of records only in two cases:

� If both variables are identical user-defined record datatypes. (Having
fields in the same order and of the same types is not sufficient.)

� If the source variable is defined by reference using %ROWTYPE and all the
target variable fields are in the same order and of the same datatype.

Currently there is no easy way to compare two variables of type Record. To
do this, you must perform a field-by-field comparison, as shown here:

function f_isDuplicate_yn
(i_emp1_rec emp%ROWTYPE, i_emp2_rec emp%ROWTYPE)

return VARCHAR2
is

v_out_tx VARCHAR2(1):=’N’;
begin

if i_emp1_rec.eName=i_emp2_rec.eName
and i_emp1_rec.mgr=i_emp2_rec.mgr
and i_emp1_rec.deptNo=i_emp2_rec.deptNo
then

v_out_tx:=’Y’;
end if;
return v_out_tx;

end;

Inserts and updates using record variables
You can use record datatypes to manipulate data inside PL/SQL routines.
Using this approach means that you don’t need to list all the fields, making
the code significantly easier to read. For example, you might need to create a

265Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 265

number of employees in a specified department of an organization. To do
this, you can use Listing 11-11.

Listing 11-11: DML Using Record Variables

procedure p_insertNewEmp(i_deptno number)
is

v_emp_rec emp%ROWTYPE; ➞3
begin

select max(empNo)+1 ➞5
into v_emp_rec.empNo
from emp;

v_emp_rec.eName:=’Emp#’||v_emp_rec.empNo;
v_emp_rec.deptNo:=i_deptno; ➞9

-- v_emp_rec.sal := required code here
insert into emp
values v_emp_rec; ➞12

end;

The following list provides more details about some of the lines in Listing 11-11:

➞3 Declares a variable of exactly the same type as the record to be
created.

➞5–10 Populates as many fields in the record as you need. If you need
additional data for testing, you can just modify the routine to pop-
ulate the required columns.

➞12 INSERT statement is fired with no list of columns or variables.
This method creates very clean code.

Taking the previous example one step farther, you might have a situation
where, by mistake, when batch-loading new data into the system, the data
associated with two employees was swapped. You cannot update primary
keys, so you have to keep the existing records and replace all columns from
record 1 with those from record 2. Because several columns exist, the code
will be very messy. Using the record datatype provides a better solution, as
shown in Listing 11-12.

Listing 11-12: Using the Record Datatype

declare
v_emp1_rec emp%ROWTYPE;
v_emp2_rec emp%ROWTYPE;

begin
select * into v_emp1_rec ➞5
from emp

where empNo=7369;--SMITH
select * into v_emp2_rec
from emp

where empNo=7499;--ALLEN ➞10

266 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 266

v_emp1_rec.empNo:=7499; ➞12
v_emp2_rec.empNo:=7369; ➞13

update emp
set row = v_emp1_rec ➞16

where empNo = 7499;--SMITH
update emp
set row = v_emp2_rec

where empNo = 7369;--ALLEN ➞20
end;

The following list breaks down some of the lines from Listing 11-12:

➞5–10 Collects all information about both employees into record
variables.

➞12–15 Swaps primary keys. (Nothing prevents you from doing it here,
in memory.)

➞16–20 The last step is the most interesting. The syntax set row allows
you to update the whole row with your variable at once.

There are some restrictions on using records in INSERT and UPDATE
statements:

� The structure of the row and the variable must be exactly the same. This
is the reason why it is safer to create variables by reference rather than
explicitly.

� The right side of the set row must contain a variable. It cannot be a
subquery.

� If you use a record variable in an INSERT/UPDATE statement, you cannot
use any other variables in the statement. For example, update emp
set row=v_emp, ename=’ABC’ where empno=123 is illegal.

Object types
As mentioned earlier, records are PL/SQL datatypes. Although they provide
flexibility in your code, they also include many limitations. Using an object-
oriented (OO) programming approach removes many of those limitations.
The crux of this approach is the idea of objects. These objects can have attrib-
utes (something that helps to describe the object) and methods (things that
can happen to the object).

For example, the object EMPLOYEE has the following attributes: Name,
Salary, Commissions, and so on. Some activities that can happen with an
employee include a request to change name or to find total compensation.

267Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 267

Using a traditional approach, you would create a table named EMP, a proce-
dure p_changeName, and a function f_getIncome_nr. You might place the
code units in a package, but they still wouldn’t be part of the EMP table. In an
object-oriented environment, you can describe the whole thing as an object
called EMP, as shown here:

create type emp_oty is object (
empNo NUMBER,
eName VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER,
hireDate DATE,
sal NUMBER,
comm NUMBER,
deptNo NUMBER,
member procedure p_changeName (i_newName_tx VARCHAR2),
member function f_getIncome_nr return VARCHAR2
);

create or replace type body emp_oty as
member function f_getIncome_nr return VARCHAR2
is
begin

return sal+comm;
end f_getIncome_nr;
member procedure p_changeName

(i_newName_tx VARCHAR2)
is
begin

eName:=i_newName_tx;
end p_changeName;

end;

Because the object type includes methods, you need a place to store the
code. Oracle provides the same structures that are available for packages,
namely an object type specification (to declare methods) and an object type
body (to provide the real code). Object elements are referenced by using
variable.attribute and variable.method notation.

Logically speaking, the object EMP is still a datatype, so you can use the
syntax (type TypeName is object). However, that type can be stored in
the database as an independent element, so you can prefix it with CREATE or
REPLACE and execute it in the same way as procedures or functions. You can
manipulate objects with the same standard DDL commands, as shown here:

drop type emp_oty; -- drop type
alter type emp_oty
add attribute birthdate_dt DATE; -- add attribute

alter type emp_oty
drop attribute birthdate_dt DATE; -- drop attribute

Listing 11-13 demonstrates the usage of object types in PL/SQL.

268 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 268

Listing 11-13: Object Type Code Example

declare
v_emp_oty emp_oty; ➞2

begin
v_emp_oty:=emp_oty(100, ➞4

‘TestEmp’,
null,
null,
sysdate,
1000,
500,
10); ➞11

v_emp_oty.sal:=v_emp_oty.sal+500; ➞12
DBMS_OUTPUT.put_line

(‘Employee:’||v_emp_oty.eName||
‘ has income ‘||v_emp_oty.f_getIncome_nr()); ➞15

end;

Here’s what’s happening in this bit of code:

➞2 Declares the variable of the type EMP_OTY.

➞4–11 Creates a new object of the specified type by using a constructor. It
is a special built-in element of any type that creates a new instance
of the object (real object made using a definition from the object
type). By default, you’re passing all the attributes declared in the
defined type to the constructor.

➞12 Reference and alter attribute SAL of the objects.

➞15 Call method f_getIncome_nr of the object.

When you define a variable of object type, the object itself doesn’t exist.
Before you create it, there’s no way to reference its element. You must create
an instance of the object first. This is the difference between the object and
record types: with object types, you cannot just start assigning values to
attributes. For example, the following code is illegal:

declare
v_emp_oty emp_oty;

begin
v_emp_oty.sal:=500; -- ILLEGAL

end;

To make this legal, you would assign the values as follows:

declare
v_emp_rec emp%ROWTYPE;

begin
v_emp_rec.sal:=500; -- LEGAL

end;

269Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 269

You can use objects in SQL, too. You have two options. First, you can use
object types as attributes in a traditional relational way, as shown here:

create table t_emp
(employee emp_oty,
remarks_tx VARCHAR2(2000));

Alternatively, you can create an object table, where each attribute becomes a
column and each row contains a unique object identifier that will allow you to
create references, as shown here:

create table t_emp of emp_oty;

You now have a persistent place to store objects more closely to the way you
think about them rather than as pure data, as shown in Listing 11-14.

Listing 11-14: Using SQL Objects

declare
v_emp_oty emp_oty;
v_out_tx VARCHAR2(2000);

begin
v_emp_oty:=emp_oty

(100,’TestEmp’,null,null,sysdate,1000,500,10);
insert into t_emp ➞7
values v_emp_oty; ➞8

update t_emp
set sal=sal+500 ➞11

where empno=100;

select ‘Income:’||t.f_getIncome_nr()
into v_out_tx ➞15
from t_emp t

where t.empno=100; ➞17
end;

The following details are relevant to Listing 11-14:

➞7–8 Inserts the object as a whole element (because in this case, the
object is a record).

➞11–13 Updates table columns as if they were normal columns.

➞15–17 Calls object methods directly from SQL. To use this functionality,
you need to create an alias to the table; otherwise, you won’t
have a way to access objects.

Now that you have an object in the database, you can retrieve it as a whole
(not just one column at a time) by using the following code:

270 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 270

declare
v_emp_oty emp_oty;

begin
select value(t)
into v_emp_oty
from t_emp t

where empNo=100;

DBMS_OUTPUT.put_line(‘Name: ‘||v_emp_oty.eName);
end;

The built-in function value returns an object that can be stored in the local
variable. You also have to create an alias for the table because that is the
only parameter that the function accepts.

There is also a special way of accessing the object table, namely by reference,
as shown here:

declare
v_emp_oref ref emp_oty;

begin
select ref(t)
into v_emp_oref
from t_emp t

where empNo=100;

update t_emp t
set sal=sal+100
where ref(t)=v_emp_oref;

end;

The built-in function ref returns a pointer to the object, so the variable you
need to declare is not of type emp_oty, but ref emp_oty, which includes a
reference to the object of specified type. Think of references as a unique pri-
mary key, which allows you to significantly speed up all of your update state-
ments and to ensure that you’re updating the object you need.

Object-oriented programming in PL/SQL is a very large topic and a complete
discussion is beyond the scope of this book, but you can look at the “Applica-
tion Developer’s Guide - Object-Relational Features” on the Oracle Technology
Network.

You can use objects in both SQL and PL/SQL.

Grouping Sets of Data into Collections
Although you can store almost everything in database tables, this isn’t the most
efficient way of processing data. Very often you need to create structures and

271Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 271

process sets of data in memory. In the Oracle environment, these structures
are called collections. A collection is an ordered group of elements, all of the
same type, addressed by a unique subscript. Because all collections repre-
sent data, they are defined as datatypes. Several types of collections are dis-
cussed in this section.

Using VARRAYs
Variable-size arrays (VARRAYs, pronounced vee-array) are a well-known type
of collection in many computer languages. Note that in the Oracle environ-
ment, array subscripts start from 1, and not from 0 (as in C and Java).
VARRAYs are of fixed length. You specify the length of the array when you
define it. Arrays of elements of the same type use sequential numbers as a
subscript. VARRAYS can be used both in PL/SQL and SQL, as shown here:

declare
type VarrayType is varray(size) of ElementType;

...

create or replace type VarrayType
is varray(size) of ElementType;

The size of a VARRAY must be a positive integer and cannot be null. There are
some restrictions on the datatypes you can use as the base element type:

� You cannot create an array of REF CURSORs (special datatype that
allows you to specify logical pointers to datasets). There is more infor-
mation about REF CURSORs in Chapter 13.

� In SQL, you cannot use BOOLEAN because it is a PL/SQL-only datatype.

Arrays always look like a list without any gaps in the subscripts, as in this
example:

#1 – John

#2 – Ed

#3 – Marc

...

#<size of array> - Zena

In most cases, you should use VARRAYs when you know the size of your data
set and that size is very stable. For example, the number of months is defi-
nitely stable, so using a VARRAY to generate a monthly report is appropriate,
as shown in Listing 11-15.

272 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 272

Listing 11-15: A VARRAY Example

declare
type month_va is varray(13) of VARCHAR2(20); ➞2
v_month_va month_va;
v_count_nr number; ➞4

begin
v_month_va:=month_va(‘January’,’February’,

‘March’,’April’,’May’,
‘June’,’July’,’August’,
‘September’,’October’,’November’,
‘December’);

DBMS_OUTPUT.put_line(‘Length:’||v_month_va.count);
v_month_va.extend; ➞12
v_month_va(v_month_va.last):=’Null’; ➞13
-- v_month_va(13):=’Null’; -- the same result

DBMS_OUTPUT.put_line(‘Length:’||v_month_va.count);➞16

for i in v_month_va.first..v_month_va.last ➞18
loop

select count(*)
into v_count_nr
from emp

where nvl(replace(to_char(hiredate,’Month’),’ ‘),
‘Null’)=v_month_va(i);

DBMS_OUTPUT.put_line
(v_month_va(i)||’: ‘||v_count_nr);

end loop;
end;

Here’s what’s happening in Listing 11-15:

➞2 Creates a new datatype MONTH_VA that represents the array. For
now, that array contains elements of simple VARCHAR2 type. The
array size is 13 (12 months + null).

➞6–10 Populates the array with real data. You can do this in a number
of ways. This one uses a constructor of the appropriate type
with a comma-separated 12-element list of strings inside the
brackets. That will create 12 elements of the 13-element array.
You can pass fewer elements than the maximum size of array,
but never more than the defined size.

➞4 The built-in method COUNT returns the number of initialized ele-
ments in the collection as shown by the output on line 11, which
proves that there are indeed only 12 elements.

➞12–13 The creation of the last element (for the NULL value) is a bit
tricky. Even though the size of the array is declared, Oracle

273Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 273

doesn’t create all the elements of the array automatically. You
need to create the new instance of the object by using the built-
in method EXTEND. Only then can you assign the value.

You can do the last assignment in a number of ways: directly by
using subscript 13 because you already had 12 elements or by
using the built-in LAST method that will return the highest sub-
script of the array. The second method works better because if
you created a new instance in the array one line earlier, you can
be certain that you will specifically populate the last element.

➞16 Checks to see whether you have all 13 objects so you can start
working with the array.

➞18 If a built-in LAST method exists, it seems logical that there
should also be a built-in FIRST method that returns the lowest
existing subscript in the array. In VARRAYs, subscripts are
always consecutive, which allows you to create a FOR loop that
can spin through the array.

Inside the loop, you’re accessing array elements by their subscripts. This
method works in both pure PL/SQL commands and SQL statements inside
the PL/SQL.

Because arrays are always dense and have consecutive subscripts, you have
no way of deleting an element inside the array. Even if you set it to NULL, it
still exists. The only thing you can do is decrease the size of the array, as
shown in Listing 11-16.

Listing 11-16: Decreasing the Size of an Array

declare
type month_va is varray(13) of VARCHAR2(20); ➞2
v_month_va month_va:=month_va();
v_count_nr number;

begin
v_month_va.extend(3); ➞6
v_month_va(1):=’January’;
v_month_va(2):=’February’;
v_month_va(3):=’March’; ➞9

v_month_va(2):=null; ➞11
if v_month_va.exists(2) ➞12
then

DBMS_OUTPUT.put_line(‘Object Exists’);
end if;

v_month_va(3):=v_month_va(2); ➞17
v_month_va.trim(1); ➞18

274 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 274

DBMS_OUTPUT.put_line(‘Count:’||v_month_va.count);
DBMS_OUTPUT.put_line(‘Last:’||v_month_va.last);

end;

The following information explains Listing 11-16 in more detail:

➞2 Declares a variable and assigns an empty constructor to it as a
default variable. This raises the same issue as when dealing with
objects. Not only do you need to declare the variable, but you
also need to initialize it via the constructor.

➞6–9 Initializes three elements in the array and populates them. You
don’t have to do this one at a time.

➞11 Assigns NULL to the second element in the array.

➞12 Uses the built-in method EXISTS to check whether the element
with subscript 2 still exists.

➞17–18 Tries to remove the last element of the array by using the built-in
method TRIM. Because you really need to delete the second ele-
ment, this code copies the third one into the second and
removes the last element of the array.

However, now the size of array decreased. Because the only way to decrease
the size of the array is to trim it, there is a rule relating to VARRAYs. The sub-
script of the last element is always equal to the size of the array. This means
that Listing 11-16 could use the following syntax:

for i in 1..v_month_va.count
...

Nesting variable data sets in tables
Although VARRAYs can be very useful, they have a fixed length. Oracle
includes a different kind of collection called nested tables. Nested tables can
hold an arbitrary number of elements and use sequential numbers as sub-
scripts. You can define equivalent SQL types, allowing nested tables to be
stored in database tables and manipulated through SQL, as shown here:

declare
type <NestedTable> is table of <ElementType>;

...

create or replace type <NestedTable>
is table of <ElementType>;

275Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 275

Deleting internal elements from a collection
At first glance, nested tables look exactly like arrays without an upper limit.
However, there is one major difference: Even at the creation point, nested
tables have consecutive subscripts; it is possible to delete internal (not only
the last) elements afterwards, as shown in Listing 11-17.

Listing 11-17: Creating Nested Tables

declare
type month_nt is table of VARCHAR2(20);
v_month_nt month_nt:=month_nt();
i number;

begin
v_month_nt.extend(3);
v_month_nt(1):=’January’;
v_month_nt(2):=’February’;
v_month_nt(3):=’March’;

v_month_nt.delete(2); ➞11
DBMS_OUTPUT.put_line(‘Count:’||v_month_nt.count);
DBMS_OUTPUT.put_line(‘Last:’||v_month_nt.last); ➞13

i:=v_month_nt.first;
loop

DBMS_OUTPUT.put_line(v_month_nt(i));
i:=v_month_nt.next(i);
if i is null
then

exit;
end if;

end loop;
end;

Check out the details about Listing 11-17:

➞11 Uses the built-in method DELETE to remove the second element
from the table. That method allows you to delete an element
from the table by its subscript or to clean up the whole table if
you aren’t passing any parameters into it.

Some side effects are associated with deleting internal elements.
For example, you cannot use FOR loops because you can’t be
sure that subscripts are contingent any more.

➞12–13 The count of records became 2, although the highest subscript is
still 3, so there is a gap.

There is a way to loop through this kind of collection by using the built-in
NEXT method and its opposite built-in method, PRIOR. The NEXT built-in
returns the subscript of the next existing element of the table and jumps over
any gap. If there are no more elements, the built-in method will return NULL.
This is the most efficient way to perform a safe loop through the nested table.

276 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 276

Returning a list based on parameters
Nested tables are more flexible than arrays and can be used in both SQL and
PL/SQL. For example, if you need to get a list of employees that satisfies some
number of parameters, you can get it by writing some advanced queries.
However, very complex business rules can cause your SQL to be problematic.
With nested tables, you can implement procedural logic to solve the problem.

The following code creates some appropriate types in SQL. In this case, creat-
ing them in a package specification is not an option because this is a PL/SQL-
only datatype.

create type emp2_oty is object (empNo NUMBER,
eName VARCHAR2(10),
deptNo NUMBER);

create type emp2_nt is table of emp2_oty;

Next, you can create a function to return a list of employees filtered by a
number of rules (these rules are greatly simplified from those you might
encounter in a working system):

� If the user passed a department number, return a list of all people in that
department.

� If a department number is not passed and a hire date is passed, return a
list of all people hired in the same month.

� If both parameters are null, return everybody.

The code to return the employee list is shown in Listing 11-18.

Listing 11-18: A Nested Table Example to Return Employee List

create or replace function f_getEmps_nt
(i_deptNo number, i_hireDate DATE)
return emp2_nt
is

v_emp2_nt emp2_nt:=emp2_nt(); ➞5
cursor c_emp is
select *
from emp;

begin
for r_emp in c_emp
loop
if i_deptNo is null then
if i_hireDate is null
or to_char(i_hireDate,’mm’)=

to_char(r_emp.hireDate,’mm’)
then

v_emp2_nt.extend;
v_emp2_nt(v_emp2_nt.last):=

(continued)

277Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 277

Listing 11-18 (continued)
emp2_oty(r_emp.empNo, r_emp.eName,
r_emp.deptno);

end if;
elsif i_deptNo=r_emp.deptNo then
v_emp2_nt.extend;
v_emp2_nt(v_emp2_nt.last):=

emp2_oty(r_emp.empno, r_emp.ename,
r_emp.deptno);

end if;
end loop;
return v_emp2_nt;

end;

➞5 Declares the variable of appropriate type. Because you don’t know
how many records could come back, use an empty constructor
as the default value. Now the task is simple. Just loop through the
cursor, check the rule procedurally, and populate the resulting
collection. In this case, object type is used as a base element of
the collection, and an appropriate constructor is needed for each
new element.

The resulting code can now be used in PL/SQL or SQL:

declare
v_temp_nt emp2_nt;

begin
v_temp_nt:=f_getEmps_nt(20,null);
DBMS_OUTPUT.put_line(‘Received:’||v_temp_nt.count);
v_temp_nt:=f_getEmps_nt(null,sysdate);
DBMS_OUTPUT.put_line(‘Received:’||v_temp_nt.count);
v_temp_nt:=f_getEmps_nt(null,null);
DBMS_OUTPUT.put_line(‘Received:’||v_temp_nt.count);

end;

Or

select F_GETEMPS_NT (10,null) from dual

You can “magically” transform a collection into a table so you can reference it
in a SQL query just as if it were a regular database table. You do this by cast-
ing the collection to a table, as shown here:

select t.*
from table (

cast (f_getEmps_nt (20,null) as emp2_nt)
) t

Two steps are needed to perform this magic. First, you need to indicate to
the SQL compiler that the result of the function f_getEmps_nt is of a type
understood by SQL. (That was the reason why you needed to create type

278 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 278

EMP2_NT as an element in the database, but not in the package.) You can do
so by using a transformation function called cast that can change the
datatypes of the passed objects. The second step is to use another function
TABLE that converts the collection into a virtual table.

Now you can do whatever you want with this query. For example, if your
front-end tool allows you to build a database query on the fly, you can create
a very flexible filtering mechanism because the parameters of the function
are user defined. If the business rules change, all you need to do is update
the function with zero impact on the front end. If this doesn’t work, you can
create a few global variables and reference them in the view, as shown here:

create or replace package pkg_globals
is

v_currentDeptno number:=10;
function f_getCurrDeptNo return number;
procedure p_setCurrDeptNo(i_nr number);

v_currentHireDate date:=sysdate;
function f_getCurrHireDate return date;
procedure p_setCurrHireDate(i_dt date);

end;

create or replace package body pkg_globals
is

function f_getCurrDeptNo return number is
begin

return v_currentDeptNo;
end;
procedure p_setCurrDeptNo(i_nr number) is
begin

v_currentDeptNo:=i_nr;
end;
function f_getCurrHireDate return date is
begin

return v_currentHireDate;
end;
procedure p_setCurrHireDate(i_dt date) is
begin

v_currentHireDate:=i_dt;
end;

end;

create or replace view v_getEmps
as
select *
from table(

cast (f_getEmps_nt (pkg_globals.f_getCurrDeptNo,
pkg_globals.f_getCurrHireDate)

as emp2_nt)
);

279Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 279

Associative arrays (index-by tables)
Both VARRAYs and nested tables have one major restriction: You can use
consecutive integers only as subscripts. However, these subscripts very
seldom have a separate meaning. For example, if you have a list of depart-
ments and you need to populate a column in that list with the list of employ-
ees, you might only know about the following way of resolving the problem:

declare
type dept_rty is record

(deptNo NUMBER, extra_tx VARCHAR2(2000));
type dept_nt is table of dept_rty;
v_dept_nt dept_nt:=dept_nt();
cursor c_emp is
select eName, deptNo
from emp;

begin
v_dept_nt.extend(3);
v_dept_nt(1).deptNo:=10;
v_dept_nt(2).deptNo:=20;
v_dept_nt(3).deptNo:=30;
for r_emp in c_emp loop
for i in v_dept_nt.first..v_dept_nt.last loop
if v_dept_nt(i).deptNo=r_emp.deptNo then
v_dept_nt(i).extra_tx:=
v_dept_nt(i).extra_tx||’ ‘||r_emp.eName;

end if;
end loop;

end loop;
end;

The problem is identifying the appropriate element of the array to update.
There’s a big difference between the actual key element of the collection and
its subscript. In this case, it would be very convenient if DEPTNO could
become the subscript of the collection. A third kind of collection can be
useful in situations like this: associative arrays. An associative array is a col-
lection of elements that use arbitrary numbers and strings for subscript
values. Because of its amorphous structure, you cannot use an associative
array in SQL. The only way to define these types is in the declaration por-
tions of PL/SQL elements (packages, procedures, and so on), as shown here:

declare
type AssocArray is table of ElementType
index by binary_integer|pls_integer|VARCHAR2(size);

You can think of associative arrays as tables sitting in memory with the pri-
mary key (subscript). That primary key can be either Integer (BINARY_
INTEGER and PLS_INTEGER enforce that) or String (VARCHAR2 or any
of its subtypes). Because the primary key is unique, you cannot have two

280 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 280

elements in the same collection with the same subscript. Listing 11-19 shows
a modified version of the previous example.

Listing 11-19: Using Associative Arrays

declare
type dept_rty is record

(deptNo number, extra_tx VARCHAR2(2000));
type dept_aa is table of dept_rty

index by binary_integer;
v_dept_aa dept_aa; ➞6
cursor c_emp is
select eName, deptNo
from emp;

begin
v_dept_aa(10).deptNo:=10; ➞11
v_dept_aa(20).deptNo:=20;
v_dept_aa(30).deptNo:=30; ➞13
for r_emp in c_emp loop

v_dept_aa(r_emp.deptNo).extra_tx:= ➞15
v_dept_aa(r_emp.deptNo).extra_tx||

‘ ‘||r_emp.eName;
end loop;

end;

Here are the details for Listing 11-19:

➞6 The first difference is in the declaration portion. You don’t need
any constructors for associative arrays. They exist from the
moment of the declaration of the variable.

➞11–13 Declares the elements of the collection. You don’t need to extend
a collection to add new elements. You can just assign any value
to any attribute of the element with the appropriate subscript
and that element with the specified subscript already exists. You
should still use an assignment statement because you can’t refer
to an object that hasn’t yet been created. Oracle creates the ele-
ments of the collection so that you can have subscript 20 imme-
diately after 10.

➞15–16 Because DEPTNO is used as the subscript of the collection, it is
very easy to update the correct row in the array.

Indexing associative arrays by VARCHAR2 can add a new dimension to your
code so that you don’t need to create complex hash algorithms to implement
the functionality of real hash tables. For example, if you need to generate a
list of employees grouped by two parameters (department and quarter when
they were hired) by using this strategy, your code will be significantly simpli-
fied, as shown in Listing 11-20.

281Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 281

Listing 11-20: Indexing Associative Arrays

declare
type list_aa is table of VARCHAR2(2000)

index by VARCHAR2(256);
v_list_aa list_aa;

cursor c_dept is
select deptNo
from dept
order by deptNo;

cursor c_emp is
select eName, deptNo,to_char(hireDate,’q’) q_nr
from emp;
v_subscript_tx VARCHAR2(256);

begin
for r_dept in c_dept loop ➞15
v_list_aa(r_dept.deptNo||’|1’):=’Q1 Dept#’

||r_dept.deptno||’:’;
v_list_aa(r_dept.deptNo||’|2’):=’Q2 Dept#’

||r_dept.deptno||’:’;
v_list_aa(r_dept.deptNo||’|3’):=’Q3 Dept#’

||r_dept.deptno||’:’;
v_list_aa(r_dept.deptNo||’|4’):=’Q4 Dept#’

||r_dept.deptno||’:’;
end loop; ➞20

for r_emp in c_emp loop ➞22
v_list_aa(r_emp.deptNo||’|’||r_emp.q_nr):=

v_list_aa(r_emp.deptNo||’|’||r_emp.q_nr)||
‘ ‘||r_emp.eName;

end loop; ➞25

v_subscript_tx:=v_list_aa.first; ➞27
loop

DBMS_OUTPUT.put_line(v_list_aa(v_subscript_tx));
v_subscript_tx:=v_list_aa.next(v_subscript_tx); ➞30
exit when v_subscript_tx is null;

end loop;
end;

The following are additional details about this code listing:

➞15–20 Creates the result collection, where the key is department number
concatenated with the quarter. When you’re using concatenated
values as hash functions, always use a separator that cannot be
in any part of the key (which allows you to avoid mutating keys).
The most convenient way to do this is to use pipe-delimited keys.

➞22–25 This loop populates the destination collection with the real data.
Because you know the hash function and have all the elements in

282 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 282

hand (DEPTNO and quarter of the hiring), you can directly access
and modify the appropriate records in the associative array.

➞27–30 The last loop is the most complicated because of the inclusion of
INDEX BY VARCHAR2. Because a FOR loop can work only with
integers, you have to manually loop through the collection. You
should do this in the same way as you did for nested tables.
Because gaps exist between subscripts, you have to use the built-
in FIRST method to start the loop and NEXT to detect the follow-
ing element.

There is a way of using a FOR loop with the associative arrays INDEX BY
BINARY_INTEGER, as shown in Listing 11-21, but this might not be very
convenient.

Listing 11-21: Using INDEX BY BINARY_INTEGER

declare
type dept_rty is record

(deptNo number, extra_tx VARCHAR2(2000));
type dept_aa is table of dept_rty

index by binary_integer;
v_dept_aa dept_aa;

begin
v_dept_aa(10).deptNo:=10;
v_dept_aa(20).deptNo:=20;
for i in v_dept_aa.first..v_dept_aa.last loop
if v_dept_aa.exists(i) then ➞11

DBMS_OUTPUT.put_line(v_dept_aa(i).deptno);
end if;

end loop;
end;

➞11 You must check for the existence of the specified subscript in
each turn of the loop. Otherwise, you’ll try to reference a nonex-
istent element of the collection and raise an exception.

Speeding Up Data Collection
with Bulk Operations

One programming concept that is very closely related to nested tables is
called bulk operations between SQL and PL/SQL. With the introduction of col-
lections, you’re dealing with two sets of data: one sitting in tables and the
other in memory. Of course, you can still perform operations one row at a
time, but it is much more efficient to let Oracle perform all the repeating
operations automatically.

283Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 283

Using the BULK COLLECT command
With the previously mentioned function f_getEmps, because of the specific
business rules, you had to process one row at a time (see “Returning a list
based on parameters” earlier in this chapter). But what if the task is much
simpler and you need to create a function that returns a nested table with
employees in a specified department? You can do this directly with the code
shown here:

create or replace function f_getEmpDept_nt
(i_deptNo number)

return emp2_nt
is

v_emp2_nt emp2_nt:=emp2_nt();
cursor c_emp is
select *
from emp

where deptNo=i_deptNo;
begin

for r_emp in c_emp loop
v_emp2_nt.extend;
v_emp2_nt(v_emp2_nt.last):=

emp2_oty(r_emp.empNo, r_emp.eName,
r_emp.deptNo);

end loop;
return v_emp2_nt;

end;

This code will fetch one row at a time. But because you’re trying to transform
one data set into another, you can use the BULK COLLECT command to per-
form this operation, as shown here:

create or replace function f_getEmpDept_nt
(i_deptNo NUMBER)

return emp2_nt is
v_emp2_nt emp2_nt:=emp2_nt();

begin
select emp2_oty(empNo, eName, deptNo)
bulk collect into v_emp2_nt
from emp

where deptNo=i_deptNo;
return v_emp2_nt;

end;

To get the same result by using explicit cursors, use Listing 11-22.

284 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 284

Listing 11-22: Using the BULK COLLECT Command

create or replace function f_getEmpDept_nt
(i_deptNo NUMBER)

return emp2_nt is
v_emp2_nt emp2_nt:=emp2_nt();
cursor c_emp is
select emp2_oty(empNo, eName, deptNo) ➞5
from emp
where deptNo=i_deptNo;

begin
open c_emp;
fetch c_emp bulk collect into v_emp2_nt; ➞10
close c_emp;
return v_emp2_nt;

end;

The relevant details of Listing 11-22 are shown here:

➞5 Because the target collection has a base element of object type,
use a constructor emp2_oty. The query was returning just one
object for a row, rather than returning a set of database attributes.

➞10 Fetches the whole result of the query into the collection via BULK
COLLECT.

You must have the same datatypes in both the SELECT and INTO clauses. For
example, the syntax shown in Listing 11-23 is valid because the base elements
are of simple type.

Listing 11-23: Bulk Query into Nested Tables

declare
type text_nt is table of VARCHAR2(256);
type number_nt is table of NUMBER;
v_eName_nt text_nt;
v_deptNo_nt number_nt;

begin
select eName, deptNo
bulk collect into v_eName_nt,v_deptNo_nt
from emp

where deptNo=40;
DBMS_OUTPUT.put_line(‘Records:’||v_eName_nt.count());

➞11
DBMS_OUTPUT.put_line(‘Fetched:’||sql%ROWCOUNT); ➞12

end;

285Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 285

The following list includes more details about the code listing:

➞11 Keep in mind that the implicit SELECT...INTO included with the
BULK COLLECT command does not raise the NO_DATA_FOUND
exception if the query returns no rows at all. Although this elimi-
nates extra exception handling, you may end up with an unex-
pected empty collection.

➞12 Checks the number of elements or cursor variables. SQL%ROWCOUNT
works on bulk operations, too.

Adding a limit to BULK COLLECT
In addition to being able to fetch one row at a time or fetch the whole set
of rows at once, with explicit cursors you can select a value somewhere in
between. For example, you might need to print the list of employees in rows
of two names. Using BULK COLLECT with a limit allows you to do this, as
shown in Listing 11-24.

Listing 11-24: Using BULK COLLECT with a Limit

declare
type text_nt is table of VARCHAR2(256);
v_ename_nt text_nt;
cursor c_emp is
select eName
from emp
where deptNo=20;

procedure p_print_row is
begin

if v_eName_nt.count=2 then
DBMS_OUTPUT.put_line
(v_eName_nt(1)||’ ‘||v_eName_nt(2));

elsif v_eName_nt.count=1 then
DBMS_OUTPUT.put_line(v_eName_nt(1));

end if;
end;

begin
open c_emp;
loop ➞19

fetch c_emp bulk collect into v_eName_nt limit 2;
p_print_row;
exit when c_emp%NOTFOUND; ➞22

end loop;
close c_emp;

end;

286 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 286

Here’s what’s going on in the code:

➞20 In this case, you’re fetching two rows at a time into the collec-
tion by passing the clause LIMIT NumberOfRows to the FETCH
statement.

➞22 The exit condition here is a bit tricky. If you’re using BULK
COLLECT with the limit, the flag %NOTFOUND becomes true if the
number of fetched records is less than the specified limit. This
means that in the last fetched set, you could have 0 or 1 record.
This is the reason why you need to check the number of elements
in the collection.

The BULK COLLECT command works in one direction, from the database to
memory, but what happens when you have a list of selected departments and
you need to raise the salary of people working in these departments? You
could use a FOR loop through the list and fire one update at a time, but a
better option is available, as shown here:

declare
type number_nt is table of NUMBER;
v_deptNo_nt number_nt:=number_nt(10,20);

begin
forall i in v_deptNo_nt.first()..v_deptNo_nt.last()
update emp
set sal=sal+10

where deptNo=v_deptNo_nt(i);
end;

The FORALL command builds a set of SQL statements and executes all of
them at once. The explanations of the restrictions and side effects related to
using the FORALL command are beyond the scope of this book, but you
should be aware of this option.

287Chapter 11: Advanced Datatypes

18_599577 ch11.qxp 5/1/06 12:15 PM Page 287

288 Part IV: PL/SQL Data Manipulations

18_599577 ch11.qxp 5/1/06 12:15 PM Page 288

Part V
Taking PL/SQL to

the Next Level

19_599577 pt05.qxp 5/1/06 12:16 PM Page 289

In this part . . .

After you’ve mastered some of the more basic concepts
and constructs of PL/SQL, this part includes a few

more advanced topics to enhance your coding knowledge.

Chapter 12 discusses the important interactions with the
database (commits, rollbacks, locks, and so on) and how
to handle problems that may occur.

Chapter 13 shows you how to use SQL and PL/SQL dynam-
ically to create very flexible applications where users can
select the operations to be executed at runtime.

Chapter 14 explains many coding best practices and
describes what to do to be a good PL/SQL programmer.

19_599577 pt05.qxp 5/1/06 12:16 PM Page 290

Chapter 12

Transaction Control
In This Chapter
� Handling transactions and data consistency

� Using commits and rollbacks

� Performing autonomous transactions

A transaction is a logical unit of work that comprises a series of SQL data
manipulation statements. The COMMIT command permanently saves

the changes that all the SQL DML commands (data manipulation — INSERT/
UPDATE/DELETE) made during the current transaction to the database.
Conversely, a ROLLBACK command ends the transaction and undoes any
changes made.

This ability to commit a set of database events is one of the cornerstones of a
professional relational database. Many smaller, PC-based relational database
products don’t support this concept of a commit and are therefore unsuitable
for real-world applications. Problems occur when something unexpected hap-
pens. The unexpected event could be the power going out, the network being
interrupted, or even the application raising an unanticipated exception. When
this unexpected event occurs, execution stops, and it is possible that only
some of your database changes have been saved. How do you know what
went into the database and what didn’t? How do you get back to a stable point
and continue processing? Without a COMMIT statement to make the changes
made by a set of commands permanent, it is almost impossible to recover
from unexpected events.

In addition to normal transaction processes, Oracle has a specialized type
of transaction called an autonomous transaction. Autonomous transactions
enable you to temporarily halt a transaction in progress, perform some SQL
operations, either commit or roll back these transactions, and then return to
the main transaction.

This chapter discusses how transactions are controlled in Oracle as well as
how to leverage the power of autonomous transactions.

20_599577 ch12.qxp 5/1/06 12:16 PM Page 291

Using Transactions to Maintain
Data Consistency

Transactions are logical units of work containing one or more SQL statements.
The main purpose of transactions is to assist in keeping the environment logi-
cally consistent. For example, imagine that you want to do an electronic
funds transfer (EFT) to swap the amounts in two bank accounts.

Performing this sample EFT involves three SQL DML statements: one to debit
your account, one to credit the receiving account, and one to record the trans-
action for your monthly statement. What happens if the power goes out after
the system has processed the debit to your account, but before the money is
credited to the other account? Clearly, one of these actions cannot happen
without the other, and without the bank ending up with very unhappy (or very
happy) customers. The code to execute this transfer is shown in Listing 12-1.

Listing 12-1: Performing an Electronic Funds Transfer

begin
update account ➞2
set balance = balance - 100
where acctno = 7902; -- Ford ➞4

update account ➞6
set balance= balance + 100
where acctno= 7499; –- Allen ➞8

insert into txn_log ➞10
(acctno, txn_type, amt)

values (7902, ‘DEBIT’, 100); ➞12
end;

Additional details for Listing 12-1 are shown here:

➞2–4 These lines subtract the transaction amount from Ford’s account.

➞6–8 These lines add the transaction amount to Allen’s account.

➞10–12 These lines log the transaction.

By introducing the concept of a transaction, Oracle tries to enforce that only
one of two things can happen when changes are being made: either they’re all
permanently saved to the database and visible to other users (committed),
or they’re rolled back and the data is unchanged. Transactions always start
with the first executable SQL statement and end when the application com-
mits or rolls back the changes.

292 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 292

The time that the user spends in front of a Web application or ATM to do the
fund transfer isn’t part of the database transaction. The transaction starts
after the payment has been specified and the user presses Submit to say,
“Okay, do it.”

When your code includes an UPDATE statement (as in Listing 12-1), Oracle
starts a new transaction and tries to identify what records are being changed.
Then it tries to lock the record so that no one else can do anything with it
until you’ve finished your modification. If somebody else is working with the
same record, Oracle either raises an exception or waits for a period of time
until the resource is free (depending on your database settings).

For example, if you’re trying to manipulate the record EMPNO=7902 (Ford),
Oracle does three things at once:

� Copies the original version of the data you’re trying modify in the
buffers allocated for your session

� Makes changes in your copy of the data

� Creates a backup of changes in the REDO log buffers (in case Oracle
needs to replicate changes in the database itself)

When you started the transaction, your changes hadn’t yet been committed.
Therefore, for anyone else looking at the system, Jones’s account still has the
$100 in it. This happens because everybody else is reading from the data-
base, but you’re reading from your buffer first (the place where changes from
the previous step are located) and only after that do you read from the data-
base. The same process will occur for the second update. At that point, there
are two ways to proceed: You can save your changes (COMMIT) or discard
them (ROLLBACK).

Committing or Rolling Back
Changes to the Database

During a transaction, such as the one we describe in the preceding section,
choosing to COMMIT or ROLLBACK obviously affects your transaction.

If you decide to commit changes, the following things happen:

� Changes are saved in the database and become visible to everyone.

� All locks held during the transaction are released.

� The transaction is marked as complete.

293Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 293

Rolling back means undoing any changes to data that have been made by
SQL statements within an uncommitted transaction. Both commits and roll-
backs come in two varieties: explicit and implicit. When you commit or roll-
back explicitly, you’re in the driver’s seat, telling Oracle what to do.

Implicit commits or rollbacks occur behind the scenes. A power failure or
exception may trigger them. Although you don’t necessarily have control
over when these happen, it’s nevertheless important to understand how
they’re connected to transaction control and keeping data consistent.

Firing explicit and implicit commits
Explicit commits are fired by using the COMMIT command, as shown in
Listing 12-2.

Listing 12-2: An Explicit Commit

begin
update ...; ➞2
update ...; ➞3
insert ... ➞4
commit; ➞5

end;

Here’s what’s going on in Listing 12-2:

➞2–3 Changes made by both updates (lines 2 and 3) and the insert (line 5)
will be posted to the database when the commit is executed.

➞5 This line executes the commit.

Implicit commits fire automatically when you use any DDL commands that
create, alter, or delete any database objects. It doesn’t matter if the DDL com-
mand fails. For example, if you try to create a unique index that contains non-
unique data, the command will fail but all prior activity is still committed. An
implicit commit is also executed when you send a request to terminate a ses-
sion in any one of a number of ways, such as using the EXIT command in
SQL*Plus or closing your connection.

Rolling back changes
Explicit rollbacks occur when you use the command ROLLBACK. The rollback
may be full or partial.

Assume that you wanted to discard all changes anywhere in your code where
an error was logged in the T_LOGERROR table. A full rollback of the whole

294 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 294

transaction, shown in Listing 12-3, discards all changes, releases all locks,
and marks the transaction “closed.”

Listing 12-3: A Full, Explicit Rollback

declare
v_errors_yn VARCHAR2(1) := ‘N’;

begin
update emp
set sal = sal * 1.1 ➞5

where deptNo = 10;
update emp
set sal = sal * .9

where deptNo = 20; ➞9

-- lots more code where bad things might happen

select decode (count(*),
0,’N’,’Y’)

into v_errors_yn
from t_logError;
If v_errors_yn = ‘Y’ then ➞17

rollback;
end if;

end;

➞17 If the T_LOGERROR table contains any records, changes made by
both UPDATE statements (lines 5 and 9) will be discarded.

In a partial rollback, Oracle allows you to insert a marker in the transaction.
This marker is called the savepoint. In this case, you may roll back the most
recent changes in the transaction, as shown in Listing 12-4.

Listing 12-4: Adding a Partial Rollback

declare
v_errors_yn VARCHAR2(1) := ‘N’;

begin
update emp
set sal = sal * 1.1 ➞5

where deptNo = 10;
savepoint SaveDept10Update;
update emp
set sal = sal * .9

where deptNo = 20; ➞10

-- lots more code where bad things might happen

select decode (count(*),

(continued)

295Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 295

Listing 12-4 (continued)
0,’N’,’Y’)

into v_errors_yn
from t_logError;
if v_errors_yn = ‘Y’ then ➞18
Rollback to SaveDept10Update; ➞19

end if;
end;

➞18 If the condition is true, Oracle will discard changes and release all
locks made by the second update (line 10). However, changes
from the first update (line 5) will still be part of the current trans-
action. They can be saved or discarded independently of the cur-
rent rollback.

Names of savepoints follow the same naming rules and restrictions as vari-
able names, as we describe in Chapter 3.

You may create multiple savepoints in the same transaction, but keep in mind
that you will lose any transactions made after the specified one, as shown in
Listing 12-5.

Listing 12-5: Adding Savepoints

begin
update ...; ➞2
Savepoint A; ➞3
update ...; ➞4
Savepoint B; ➞5
update ...; ➞6
if condition then ➞7
rollback to savepoint A; ➞8

end if;
commit;
end;

If the condition in line 1 is true, the update in line 4 and line 6 will be dis-
carded. The savepoint at line 5 is irrelevant in this routine. Only the update at
line 2 will be committed when the COMMIT statement is reached.

If you do use multiple savepoints in one transaction, give all savepoints
unique, descriptive names. Although Oracle allows you to reuse a savepoint
name, we recommend avoiding this. Reusing a savepoint name will make it
difficult to determine which savepoint was actually the most recent one
encountered.

Rolling back to a savepoint only discards changes to the database; it does not
undo any changes you made to local PL/SQL variables.

296 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 296

Knowing when to use implicit rollbacks
Oracle uses implicit rollbacks in special cases to maintain data consistency.

A statement-level rollback is fired if a SQL statement causes an error at any
time during execution. This type of rollback causes the code to execute as if
that statement had never been run. This means that all locks acquired for the
failed statement are released.

Listing 12-6 attempts to place 11 characters into the column eName defined
as VARCHAR2(10).

Listing 12-6: Code Requiring a Rollback

begin
update emp
set eName=rpad (eName,10,’*’) ➞3

where empNo=7369;
update emp
set eName=rpad (eName,11,’*’) ➞6

where empNo=7499;
end;

➞6 The second update will fail because eName is only ten characters
long, but the critical thing to recognize is that there will be no
locks in the record of employee 7499. Anyone else can edit
employee 7499 and commit the changes while the routine is run-
ning. Employee 7369 is locked while the routine is running. No one
will be able to modify that record until the routine terminates or
releases its lock.

A transaction-level rollback is fired when a session is terminated abnormally.
This can happen for many reasons:

� You mistakenly turn off your computer. For Web applications, this usu-
ally doesn’t terminate the session until the application server times out
your process.

� A DBA terminates your session.

� Your session terminates because of an unhandled exception (see
Chapter 5 for a full discussion of exceptions).

� The Oracle database goes down.

� Your connection to the database is lost.

When any of these events occur, all uncommitted changes are lost.

297Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 297

A transaction-level rollback of all outstanding transactions is fired in the case
of a database crash. In that case, powering down the server will cause any
uncommitted data for all users connected at that moment to be discarded.

Resolving deadlocks
There is one more situation where a rollback might be necessary. A deadlock
can occur when two or more users are waiting for a resource locked by each
other. For example, suppose user 1 locks customer A and then tries to lock
customer B and at the same time, and user 2 locks customer B and then tries
to lock customer A. Then user 1 waits for user 2 to unlock customer B and
user 2 waits for user 1 to unlock customer A. This is a deadlock. Oracle resolves
it by raising a deadlock exception (ORA-00060: deadlock detected while
waiting for resource) in user 1’s session. This terminates the procedure
and allows user 2’s procedure to successfully complete.

Deadlocks are rare, and the Oracle DBMS is pretty good at detecting dead-
locks. When a deadlock is encountered, instead of waiting forever for the situ-
ation to resolve itself, Oracle will terminate one of the sessions (causing a
rollback) to resolve the deadlock.

It isn’t very likely that you’ll ever encounter this problem. But deadlocks do
happen from time to time. If you use autonomous transactions a lot (as we
describe in the next section), you’ll have a higher chance of running into a
deadlock situation.

Autonomous Transactions
Oracle has the ability to suspend the execution of a transaction and transfer
execution control to an independent child transaction. This child transaction
is called an autonomous transaction. An autonomous transaction is completely
independent of the calling transaction, which means that it doesn’t share
resources, locks, or any commit dependencies with the main transaction.

Autonomous transactions can include just as much functionality as any other
database transactions. They’re very useful for creating software components
that can be reused in numerous applications.

One advantage of using an autonomous transaction is that DML can be exe-
cuted and committed, even if the main transaction is rolled back. For exam-
ple, a row can be inserted in a transaction log, recording which data was
accessed, even if the user doesn’t update any of the data. This is a very
useful feature for auditing and security.

298 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 298

Setting up the syntax for an
autonomous transaction
Before we show you an example of autonomous transaction in context, it’s
helpful to know the syntax, which is outlined in Listing 12-7.

Listing 12-7: Autonomous Transaction Syntax

declare
pragma autonomous_transaction; ➞2

begin ➞3
...
number of statements
...

commit;(or rollback;) – End of transaction 1 ➞7
...
number of statements
...

commit;(or rollback;) – End of transaction 2
end;

Here are more details about Listing 12-7:

➞2 Begins an autonomous transaction. This command indicates that
the autonomous transaction starts from the BEGIN statement of
the block (line 3) in which the pragma statement is found. From
this point until the end of the transaction, all PL/SQL blocks (func-
tions, procedures, anonymous blocks, and triggers) belong to that
new transaction.

The END statement doesn’t close the autonomous transaction
automatically. The transaction must be closed explicitly by issu-
ing a COMMIT, ROLLBACK, or any command including an implicit
commit. If one of these commands isn’t executed and the block
defined as an autonomous transaction ends, the Oracle RDBMS will
roll back the entire transaction and raise an error with the follow-
ing message: ORA-06519: active autonomous transaction
detected and rolled back.

➞7 If the transaction ended but the block defined as autonomous
didn’t finish, the new transaction also will be autonomous.

A pragma autonomous transaction (a PL/SQL compiler directive to define an
autonomous transaction) can be used in the declaration part of the following:

� Top-level anonymous blocks

� Local, standalone, or packaged functions and procedures

299Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 299

� Database triggers

� Methods of object types

Handling auditing and security with
autonomous transactions
Using the auditing and security example, when dealing with highly secure
data such as the SAL (salary) column in the EMP table of an Employee data-
base, you want to be aware of any modifications made to that column. There
are several ways to try to do this. One obvious thing you can try that won’t
work is to create a trigger and a special procedure that would log the infor-
mation into a special table, as shown in Listing 12-8.

Listing 12-8: Non-Working p_log_audit

create sequence audit_seq
/
Create table audit_emp (action_nr NUMBER,

action_cd VARCHAR2(2000), descr_tx VARCHAR2(2000),
user_cd VARCHAR2(10), date_dt DATE)

/
Create or replace procedure p_log_audit

(what_tx VARCHAR2, descr_tx VARCHAR2,
who_tx VARCHAR2, when_dt DATE) is

begin
insert into audit_emp
values(audit_seq.nextval, what_tx, descr_tx,

who_tx, when_dt);
commit; ➞15

end;
/
create or replace trigger bu_emp
before update of sal on emp
referencing new as new old as old for each row
begin

p_log_audit (‘update’,
‘update of emp.salary’, user, SYSDATE);

end;
/

➞15 The COMMIT command in the procedure p_log_audit should
post the inserted data to the permanent storage even if the update
to the employee table fails.

If you try to increase the salary of employee 7900, you get an error, as shown
in Listing 12-9.

300 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 300

Listing 12-9: Error from COMMIT in a Trigger

SQL> update emp set sal=10000 where empNo=7900;
update emp set sal=10000 where empNo=7900

*
ERROR at line 1:
ORA-04092: cannot COMMIT in a trigger
ORA-06512: at “SCOTT.P_LOG_AUDIT”, line 9
ORA-06512: at “SCOTT.BU_EMP”, line 2
ORA-04088: error during execution of trigger

‘SCOTT.BU_EMP’

From the error, you can see that you aren’t allowed to perform a commit in
the trigger. The current transaction wasn’t completed, so it isn’t possible to
post changes and initialize the new transaction.

Because using this method can’t solve the problem, you need to use another
strategy to execute one set of commands independently from another.
However, the commands should be in the same session and share the same
session resources. This is a good place to use an autonomous transaction, as
shown in Listing 12-10, which shows the corrected p_log_audit procedure
that can be called in a trigger.

Listing 12-10: p_log_audit as Autonomous Transaction

create or replace procedure p_log_audit
(what_tx VARCHAR2, descr_tx VARCHAR2,
who_tx VARCHAR2, when_dt DATE)

is
pragma autonomous_transaction;

begin
insert into Audit_emp
values(audit_seq.nextval, what_tx, descr_tx,

who_tx, when_dt);
commit;

end;

When you run this code, you get the following result:

SQL> update emp set sal=10000 where empno=7900;
1 row updated.
SQL> select action_nr, action_cd, user_cd, date_dt
2 from audit_emp;

ACTION_NR ACTION_CD USER_CD DATE_DT

2 update SCOTT 08-JUL-05

There are no errors, and the change was logged. But what happens if you roll
back the update?

301Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 301

SQL> rollback;
Rollback complete.
SQL> select sal from emp where empno=7900;

SAL

950
SQL> select action_nr, action_cd, user_cd, date_dt
2 from audit_emp;

ACTION_NR ACTION_CD USER_CD DATE_DT

2 update SCOTT 08-JUL-05

In this situation, the update of the salary was rolled back (it is still 950, not
10000), but the log wasn’t changed, which means that you have a mecha-
nism to track any transaction activity, regardless of the main activities.

To achieve the output shown above, the code works in five steps:

1. The UPDATE statement fires the trigger BU_EMP.

2. The trigger calls the function p_log_audit (still in the same
transaction).

3. The declaration block of the procedure still belongs to the main trans-
action; however, the database found the line pragma autonomous_
transaction. This means that from the next BEGIN statement, it
should start a new transaction in the current session.

4. Inside the autonomous transaction, a new record was inserted into the
table AUDIT_EMP, and the change was committed. The commit only
makes changes in this transaction permanent. It is completely indepen-
dent from the parent transaction, and any data updated in the parent
transaction still isn’t committed.

5. When the autonomous transaction ends, because the insert has been
committed, the database can properly return to the main transaction
and the trigger from which the procedure was called.

Autonomous transaction features
To be able to properly describe an autonomous transaction, we compare it
with nested transactions. Nested transactions occur when any function, proce-
dure, method, or anonymous block is called within another block or trigger
and the called procedure is not autonomous.

One of the really interesting things about nested transactions is that there is
nothing interesting about them. If there is an INSERT, UPDATE, or DELETE
command in a procedure, and then a second INSERT, UPDATE, or DELETE

302 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 302

command in a function is called by that procedure, and then a third INSERT,
UPDATE, or DELETE command in an anonymous PL/SQL block is in the called
function, Oracle treats these transactions as though those three commands
were right next to each other in your code. It is all one database transaction
(even divided into a number of nested ones). What is going on behind the
scenes is very complex, but you need not even be aware that this concept
of a nested transaction exists. Everything is transparent to the developer.
However, when you make a called function or procedure autonomous, it is a
very different thing.

What are the differences between autonomous and nested transactions? One
of the main differences is how autonomous and nested transactions treat
scope. The concept of scope is defined as the ability to see values of various
things within the database. These “things” could be variables, data changes,
locks, settings, exceptions, and so on. It is important to understand how dif-
ferent Oracle constructs behave on different levels (session/transaction) and
in different contexts (autonomous/nested transactions).

Data changes
The most critical aspect of any system functionality is what happens to your
data. That question is bidirectional: What happens to changes in the main
transaction? What happens to changes in the autonomous one?

As an example, Listing 12-11 is a small routine that will print out a number of
records in the table AUDIT_EMP.

Listing 12-11: Autonomous Transaction

create or replace procedure p_data_change_test is
v_nr NUMBER;
pragma autonomous_transaction;

begin
select count(1) into v_nr from audit_emp; ➞5
DBMS_OUTPUT.put_line (‘Count=’||v_nr); ➞6

end;
/
delete from audit_emp ➞8
/
commit ➞10
/

Here are the details about Listing 12-11:

➞5–6 These lines fetch the records.

➞8 To simplify the example, all records have been removed from the
audit-emp table and the change committed (line 10).

303Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 303

The following routine inserts a record into AUDIT_EMP (line 2). After that, the
p_data_change_test procedure will be called (line 3).

SQL> begin
2 insert into audit_emp (action_nr) values (100);
3 p_data_change_test;
4 end;
5 /

Count=0
PL/SQL procedure successfully completed.
SQL>

But there’s a surprise. Inside the autonomous transaction, Oracle doesn’t see
a new record inserted from the parent transaction. Because of the data con-
sistency, Oracle spawns an autonomous transaction as of the last stable
moment. That moment is exactly the beginning point of the parent transac-
tion. This is the reason why no uncommitted changes from the parent trans-
action are visible to the autonomous one.

What happens with data changes that are inside autonomous transactions?
To answer this question, some additional definitions are needed:

� Isolation level: The degree to which the intermediate state of the data
being modified by a transaction is visible to other concurrent transac-
tions (usually from a different session); and, the data being modified by
other transactions is visible to the current transaction.

� Isolation level = Read committed: A transaction rereads data that it has
previously read and finds that another committed transaction has modi-
fied or deleted the data. This means that if somebody else changes the
data after you connected to the database (starting the transaction),
you’ll see these changes.

� Isolation level = Serializable: The transaction can’t see any changes in
other transactions that have been processed after it started. In that
case, until you start a new session/transaction, you’ll see exactly what
data existed in the database at the moment you connected.

Listing 12-12 includes another routine that still the clears table before each test.

Listing 12-12: Autonomous Transaction with Data Changes

create or replace procedure p_commit_test is
pragma autonomous_transaction;

begin
insert into audit_emp(action_nr) values(100); ➞4
commit; ➞5

end; ➞6
/ ➞7

304 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 304

delete from audit_emp
/
commit
/

Listing 12-12 works like so:

➞4 The first test will be with the default Oracle setting (READ_
COMMITTED). That routine calls p_commit_test (line 5).

➞5 Inserts one record in the table AUDIT_EMP and checks the total
number of records in the same table after the execution (lines 6–7).

The result of running Listing 12-12 is as follows:

SQL> declare
2 V_nr NUMBER;
3 begin
4 set transaction isolation level read committed;
5 p_commit_test;
6 select count(*) into v_nr from audit_emp;
7 DBMS_OUTPUT.put_line (‘Count=’||v_nr);
8 end;
9 /

Count=1
PL/SQL procedure successfully completed.

There are no surprises here. Oracle successfully detected the new record.
Now you can clean the table one more time and try another option, namely
the SERIALIZABLE (line 10) in the following code:

SQL> delete from audit_emp;
1 row deleted.
SQL> commit;
Commit complete.
SQL> Declare
2 v_nr NUMBER;
3 Begin
4 set transaction isolation level serializable; ➞10
5 p_commit_test;
6 select count(*) into v_nr from audit_emp;
7 DBMS_OUTPUT.put_line (‘Count=’||v_nr);
8 End;
9 /

Count=0
PL/SQL procedure successfully completed.

The result is indeed a surprise. For the Oracle, there is no difference between
an autonomous transaction and transactions from another session in the con-
text of data visibility.

305Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 305

Locks
Autonomous transactions can be tricky. From the experience of working with
isolation levels, it is clear that data changes can be troublesome. But what
about locking (not updating) the record in the table? Some front-end tools
might place a lock on the record that you just modified and keep that lock for
some time. This can sometimes cause problems. For example, you might have
a simple routine that gives a specified employee a 10 percent salary raise,
which is defined as an autonomous transaction, as shown in Listing 12-13.

Listing 12-13: A Locking Example

create or replace procedure p_raise (i_empNo number)
is

pragma autonomous_transaction;
begin

update emp
set sal=sal*1.1

where empNo=i_empNo;
commit;

end;

Now you will try to lock the needed record for update (to be sure that nobody
else touches it) and modify salary by using the newly created procedure
p_raise:

SQL> declare
2 v_emp_rec emp%ROWTYPE;
3 begin
4 select *
5 into v_emp_rec
6 from emp
7 where empNo = 7900
8 for update; ➞8
9 p_raise (7900); ➞9
10 end;
11 /
declare
*
ERROR at line 1:
ORA-00060: deadlock detected while waiting for resource
ORA-06512: at “SCOTT.P_RAISE”, line 5
ORA-06512: at line 10

Here’s what happens in the preceding code:

➞8 Lock the whole record for update.

➞9 Calls procedure p_raise.

306 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 306

The last action creates a deadlock within the same session. Because the
record was locked for update in the parent transaction (started with anony-
mous block), the autonomous transaction (started in the procedure p_raise)
was waiting for its turn. It needed to have its own row-level lock to perform an
update. But the parent transaction couldn’t release a lock because it was wait-
ing for the autonomous one to finish. As a result, the deadlock is obvious.

When using any autonomous transaction routines, you need to understand
locking because locks are transaction-level resources and not shared across
transactions.

Exceptions
If changes in the autonomous transaction aren’t committed or rolled back
when the transaction ends, Oracle will raise an error and roll back the whole
transaction. It is just a matter of habit to close all autonomous transactions
appropriately. But it is possible that something in the autonomous transac-
tion went wrong. What happens to uncommitted changes?

To answer that question, the procedure p_rollback_test, which contains
two UPDATE statements, is shown in Listing 12-14.

Listing 12-14: Handling Uncommitted Changes Using rollback_test

create or replace procedure p_rollback_test is
pragma autonomous_transaction;

begin
update emp
set eName=rpad (ename,10,’*’) ➞5

where empNo=7369;
update emp
set eName=rpad (ename,11,’*’) ➞8

where empNo=7499
commit;

end;

Here’s what Listing 12-14 is doing:

➞5 This statement is okay.

➞8 Tries to place an 11-character string into the field ENAME defined
as VARCHAR2(10).

In the parent transaction, an exception handler catches the raised exception
and length of the column ENAME that should be modified by the first update.
(Recall the example in Listing 12-6 with statement-level rollbacks.) The result
of running the code in Listing 12-14 is as follows:

307Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 307

SQL> delete from audit_emp;
1 rows deleted.
SQL> commit;
Commit complete.
SQL> declare
2 v_tx VARCHAR2(256);
3 begin
4 p_rollback_test;
5 exception
6 when others
7 then
8 select eName into v_tx from emp
9 where empNo = 7369;
10 DBMS_OUTPUT.put_line(‘Error:’||sqlerrm);
11 DBMS_OUTPUT.put_line(‘eName=’||v_tx);
12 end;
13 /
Error:ORA-01401: inserted value too large for column
Ename=SMITH
PL/SQL procedure successfully completed.

This produced another unexpected result; namely, eName remained the same. In
most cases, it should become SMITH, but exceptions raised in an autonomous
transaction caused a transaction-level rollback rather than a statement-level
rollback. This means that all uncommitted changes in the autonomous transac-
tion will be lost if the exception propagates to the parent level.

Applying autonomous transactions
to other real-world situations
Autonomous transactions can be extremely powerful when used properly.
The following are some real-world examples of when they can be used.

Activity audit
Listing 12-8, where you create a log of anyone modifying the SAL column,
could be rewritten more simply with just a trigger. Triggers by themselves
can be defined as autonomous transactions, as shown here:

create or replace trigger emp_bu
before update of sal on emp
referencing new as new old as old for each row
declare

pragma autonomous_transaction;
begin

insert into audit_emp values(audit_seq.nextval,
‘update’, ‘update of emp.salary’,user, SYSDATE);

commit;
end;

308 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 308

However, defining triggers as autonomous transactions might create dead-
locks. If you want to add the business rule “If salary was decreased, commis-
sions should be increased by half of the difference” to your code, the most
straightforward solution would look like the following:

create or replace trigger emp_bu
before update of sal on emp
referencing new as new old as old for each row
declare

pragma autonomous_transaction;
begin

insert into audit_emp
values(audit_seq.nextval, ‘update’,

‘update of emp.salary’, user, SYSDATE);
if :new.sal < :old.sal then

update emp
set comm=(:new.sal-:old.sal)/2
where empNo=:new.empNo;

end if;
commit;

end;

The problem is that the solution is wrong and produces this output:

SQL> update emp
2 set sal = 400
3 where empNo = 7369;

update emp
*

ERROR at line 1:
ORA-00060: deadlock detected while waiting for resource
ORA-06512: at “SCOTT.BU_EMP”, line 8
ORA-04088: error during execution of trigger

‘SCOTT.BU_EMP’
SQL>

The reason for the failure is very simple: Oracle already locked the record
you’re trying to update in the main transaction. When you spawned the
autonomous one, you were trying to update exactly the same record.
However, the main transaction waits for the trigger to complete before releas-
ing the lock, thus resulting in a deadlock.

Query audit
Some situations require more than simple data modification. For example you
may need to know who queries the SAL column from the table EMP. To
retrieve this information, you can create a special function (f_log_nr), as
shown in Listing 12-15.

309Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 309

Listing 12-15: Query Audit Function

create or replace function f_log_nr (v_value_nr NUMBER)
return number is

pragma autonomous_transaction;
begin
insert into audit_emp (action_nr, user_cd, date_dt)
values (audit_seq.nextval, user, SYSDATE); ➞6
commit; ➞7
return v_value_nr; ➞8

end;
/

Here’s what goes on in Listing 12-15:

➞6–7 Logs the activity into audit table.

➞8 Returns exactly the same value it receives as a parameter.

You then need to create a special view (V_EMP) that looks exactly like the
EMP table with one small difference. Instead of the column SAL, use the func-
tion f_log_nr with the SAL column passed into it. The code to create the
view is shown here:

create or replace view v_emp as
select empNo, eName, deptNo, job, mgr, f_log_nr (sal) sal
from emp;

Because the function is defined as an autonomous transaction, you can use it
in a SELECT statement, even though it has DML inside. Exception ORA-14551
will not be raised in that case, because the transactions are consistent. There
are just two of them.

In SQL, you can use functions that do absolutely anything if they are defined
as autonomous transactions. Just be very careful.

The function returns exactly the same value it received, so from the user’s
point of view, there is no change. But logs are generated each time the func-
tion is called, so a log is generated for each row retrieved from the database,
which is exactly what you wanted.

Self-mutating transaction problems
To implement the business rule “An Employee’s commissions cannot exceed
the salary of his/her manager,” check out the following direct solution:

create or replace trigger emp_bu
before update of comm on emp
referencing new as new old as old for each row
declare

v_sal_nr NUMBER;

310 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 310

begin
select sal into v_sal_nr
from emp
where empNo=:new.mgr;
if :new.comm > v_sal_nr then

raise_application_error(-20999,
‘Commissions are too high!’);

end if;
end;

The problem is that you’re trying to access the same table you’re updating. In
this case, Oracle has no way of ensuring that the data is consistent in the cur-
rent transaction and just gives up, as shown here:

SQL> update emp
2 set comm = 10000
3 where empNo = 7369;

update emp
*

ERROR at line 1:
ORA-04091: table SCOTT.EMP is mutating, trigger/function

may not see it
ORA-06512: at “SCOTT.BU_EMP”, line 4
ORA-04088: error during execution of trigger

‘SCOTT.BU_EMP’
SQL>

To allow Oracle to maintain consistency, use the code shown in Listing 12-16.

Listing 12-16: Code Using an Autonomous Transaction

create or replace trigger emp_bu
before update of comm on Emp
referencing new as new old as old for each row
declare

pragma autonomous_transaction; ➞5
v_sal_nr NUMBER;

begin
select sal into v_sal_nr
from emp where empNo=:new.mgr;
if :new.comm > v_sal_nr then

raise_application_error(-20999,
‘Commissions are too high!’);

end if;
end;

➞5 Wraps the trigger in an autonomous transaction. No data modifi-
cations take place inside of the trigger so you aren’t required to
place COMMIT at the end.

311Chapter 12: Transaction Control

20_599577 ch12.qxp 5/1/06 12:16 PM Page 311

Now you get the expected result:

SQL> update emp set comm = 10000 where empno = 7369;
update emp

*
ERROR at line 1:
ORA-20999: Commissions are too high!
ORA-06512: at “SCOTT.BU_EMP”, line 8
ORA-04088: error during execution of trigger

‘SCOTT.BU_EMP’
SQL>

When resolving self-mutation issues with autonomous transactions, don’t use
this approach if you want to query the same column you’re updating. The
business rule “The salary of the employee should not exceed the salary of
his/her manager” must be implemented procedurally rather than in the trig-
ger for the following reasons. Assume you’re updating a set of records at one
time by using this code:

update emp set sal=sal*1.1 where deptNo=10

Because you’re updating salaries for the whole department, the salary of both
the lower-level employee and his or her manager will be changed. But the
autonomous transaction won’t know about these changes, because it starts
with the dataset that existed at the beginning of the main transaction (that is,
before the update was fired). This means that you can compare the salary of
the employee only with the original salary of the manager because the new
one hasn’t yet been posted. There is no simple solution for this problem.

312 Part V: Taking PL/SQL to the Next Level

20_599577 ch12.qxp 5/1/06 12:16 PM Page 312

Chapter 13

Dynamic SQL and PL/SQL
In This Chapter
� Understanding native dynamic SQL

� Using the EXECUTE IMMEDIATE command

� Using OPEN...FOR — dynamically defined cursors

When writing code in most situations, you know what database informa-
tion must be accessed and how the information might be manipu-

lated. Using the simple Employee and Department example, you know what
tables and columns are being used and/or changed, what criteria are used to
select rows, and the column datatypes. However, in some cases, the clauses,
commands, variable datatypes, number of variables, and database object ref-
erences aren’t known prior to compiling the code. In these cases, the code
must be created at runtime and will change each time the program is exe-
cuted. These code statements are dynamic.

Dynamic SQL and PL/SQL allow you to create very flexible applications,
where users can select which operations, tables, columns, and so on are
involved. This chapter shows how you can build queries, pieces of PL/SQL
code, or even whole procedural routines on the fly.

Taking Advantage of Dynamic SQL
Having many (perhaps hundreds) of repetitive elements in your logic often
causes problems. For example, you might have a huge table with 100 columns
and a set of reports, each of which requires 2 or 3 columns, but not the whole
set. Or each calendar quarter, you need to archive the data into a separate
table. Or you need to build code to query archived information, but the table
doesn’t exist at the moment you’re writing the code.

These situations would be extremely difficult to handle by using regular SQL
or PL/SQL. For these cases, you can use the powerful feature Native Dynamic
SQL (also called dynamic SQL). Native Dynamic SQL allows you to build SQL
or PL/SQL statements dynamically by using text strings and some additional
command syntax and by processing the statements at runtime.

21_599577 ch13.qxp 5/1/06 12:16 PM Page 313

The sections in this chapter discuss some of the ways in which Native
Dynamic SQL can help you create more efficient code to handle specific prob-
lems, including the following:

� Querying SQL tables in many different ways and keeping the code efficient

� Building a generic data viewer so that you can enter parameters on the
fly and see data in different ways, based on those parameters

� Creating DDL on the fly so you have a generic routine that works with
any database object

A Simple EXECUTE IMMEDIATE
Eighty percent of all dynamic SQL is covered by some fairly simple com-
mands that include EXECUTE IMMEDIATE. Here are a couple of examples:

begin
execute immediate ‘whatever_text_string_you_want’;

end;

or

declare
v_variable_tx VARCHAR2(32000);

begin
v_variable_tx:=’whatever_you_want’;
execute immediate v_variable_tx;

end;

From a syntax point of view, the following points are important:

� Only one command, EXECUTE IMMEDIATE, is used.

� The code to be executed can be passed as a variable or directly as a
string in the command.

� The string cannot exceed 32K. The code can range from a single SQL
command to a large block of PL/SQL. So, although 32K is generous, it
might not be sufficient for all purposes. If you need to work with large
strings, Oracle’s DBMS_SQL package is available, but it is significantly
less convenient than Native Dynamic SQL.

� All PL/SQL blocks passed as a string should have a semicolon at the end,
as shown here:

execute immediate ‘begin p_test; end;’;

� All SQL statements passed as a string should not have a semicolon at
the end, as shown here:

execute immediate ‘select 1 from dual’ into a;

314 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:16 PM Page 314

A good illustration of the idea of Native Dynamic SQL is an enterprise with a
few dozen departments. Each department has its own routine to build end-of-
year summaries, as shown here:

create or replace procedure p_summary(i_deptNo NUMBER) is
begin

if i_deptNo = 10
then

p_summary_10;
elsif i_deptNo = 20
then

p_summary_20;
...
and so on...
...
end if;

end;

Each time a new department is opened or an existing department is closed,
you would need to modify the routine. However, all these procedures have
one common feature: The name looks like p_summary_deptNo. This is a per-
fect case for using dynamic SQL. The new routine needs only one line, as
shown in Listing 13-1.

Listing 13-1: A Dynamic SQL Example

create or replace procedure p_summary(i_deptNo NUMBER) is
begin

execute immediate
‘begin p_summary_’||i_deptNo||’; end;’; ➞4

end;

➞4 The logic is simple. It creates the name of the procedure by con-
catenating the department number with the string ‘p_summary_’
and wrapping the procedure name in BEGIN...END to create an
anonymous block. Using this approach, opening or closing a
department doesn’t matter. To review the code to be executed,
you can use Listing 13-2.

Listing 13-2: Reviewing Dynamic SQL

create or replace procedure p_summary(i_deptNo NUMBER)
is

v_tx VARCHAR2(2000);
begin

v_tx:= ‘begin p_summary_’||i_deptNo||’; end;’; ➞5
DBMS_OUTPUT.put_line(v_tx); ➞6
execute immediate v_tx;

end;

315Chapter 13: Dynamic SQL and PL/SQL

21_599577 ch13.qxp 5/1/06 12:16 PM Page 315

➞5–6 Places the string to be executed into the variable. Now you can
send it to the output before execution.

The EXECUTE IMMEDIATE command must include a string. It can be a
VARCHAR2 variable, a literal quoted string, or any string expression. Using a
string variable gives you more flexibility. You can create the whole logical
flow at any level of complexity to build your code, print it out, save it, alter it,
and so on. But because you’re building a string, it is just a string and not
source code, so there are no automatic syntax checks. Oracle checks the
syntax of your string only when you try to run it.

The following code does exactly the same thing as the code you would call
manually. It detects the appropriate procedure to execute and executes it.

SQL> set serveroutput on
SQL> exec p_summary(10);
begin p_summary_10; end;
PL/SQL procedure successfully completed.

Building SQL on the Fly
The preceding sections show how dynamic SQL works for PL/SQL, but what
about SQL? You can get the value of any column in the EMP table by knowing
the primary key and the name of the column, as shown in Listing 13-3.

Listing 13-3: Using Dynamic SQL

create or replace function f_getEmp_tx
(i_empNo NUMBER, i_column_tx VARCHAR2)

return VARCHAR2
is

v_out_tx VARCHAR2(2000);
v_sql_tx VARCHAR2(2000); ➞6

begin
v_sql_tx := ➞8

‘select ‘||i_column_tx|| ➞9
‘ from emp ‘ || ➞10
‘where empNo=’||i_empNo; ➞11

execute immediate v_sql_tx ➞13
into v_out_tx; ➞14
return v_out_tx;

exception
when others then return null;

end;

316 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:16 PM Page 316

The following are additional details about Listing 13-3:

➞8–11 Builds a SELECT statement. To make the SQL more readable, you
can type it on separate lines, concatenated together, so the
structure matches your standards for a SELECT statement.

➞13–14 You aren’t just executing some code; you also need to access the
data retrieved by the code. The logic here is comparable to that
used when building a regular SELECT...INTO statement. At this
point, you add INTO variable_name after the statement you
want to execute (not inside the statement, after the SELECT
command).

The restrictions are the same as for regular SELECT...INTO:

� The SELECT statement should return exactly one row (otherwise the
exception TOO_MANY_ROWS or NO_DATA_FOUND will be raised).

� You must also ensure that the value to be returned is of the same type
as the variable used in the INTO clause. In dynamic SQL, the Oracle
database doesn’t know anything about the code you’re building before
you try to run it.

Building dynamic SQL requires significantly more debugging efforts because
you can’t depend on the compiler to check for syntax errors.

Improve performance with bind variables
There is one problem with the way in which the dynamic query from Listing
13-3 was created. The execution of each statement is a multistep process:
Oracle parses the statement, creates an execution plan, allocates memory,
and so on.

But Oracle also tries to be smart and first checks to see whether a similar
statement has recently been executed. If it has, the engine reuses the previ-
ously collected information about how the statement should be executed.
Although this reuse might not represent a significant performance improve-
ment in a single session or in a development environment with a limited
number of users, in a production environment it can mean the difference
between a working and a failing system. For example, Oracle keeps each of
these statements in memory as independent entities:

select eName from emp where empNo=7896
select eName from emp where empNo=4564
...
select eName from emp where empNo=4546

317Chapter 13: Dynamic SQL and PL/SQL

21_599577 ch13.qxp 5/1/06 12:16 PM Page 317

Although these are the same statements with different parameters to be
passed, you wouldn’t code that way in production system SQL. The standard
solution is to use variables — now Oracle would have to process the state-
ment only once.

Native Dynamic SQL allows you to perform the same kind of code optimization
by using bind variables. Bind variables have the following characteristics:

� They serve exactly the same purpose as regular variables, namely as
placeholders for values that will be supplied only at runtime.

� They’re part of the text string that forms the dynamic SQL.

� They start with a colon (:) and may contain any alphanumeric
characters.

� Each bind variable should have a corresponding argument containing
the real value at runtime. There is no way to automatically identify that
all your bind variables have pairs when you’re writing the code, so be
careful.

In the sections that follow, we show you a few ways in which you can use
bind variables to resolve this performance issue.

Comparing variables to bind variables
As we mention, variables are the typical solution to streamlining code, as
shown in Listing 13-4.

Listing 13-4: Using Variables in Static SQL

create or replace function f_getEname
(i_empNo NUMBER)

return VARCHAR2
is

v_out_tx VARCHAR2(2000);
begin

select eName into v_out_tx
from emp
where empNo = i_empNo; ➞9
return v_out_tx;

exception
when others then return null;

end f_getEname;

➞9 Uses a placeholder rather than the real value. Consequently,
Oracle performs the whole preparation cycle only the first time
this SQL statement is executed.

A more effective version of the previous dynamic procedure (Listing 13-4) is
shown in Listing 13-5.

318 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:16 PM Page 318

Listing 13-5: Using Bind Variables in Dynamic SQL

create or replace function f_getEmp_tx
(i_empNo NUMBER, i_column_tx VARCHAR2)

return VARCHAR2
is

v_out_tx VARCHAR2(2000);
v_sql_tx VARCHAR2(2000);

begin
v_sql_tx :=

‘select ‘||i_column_tx||
‘ from emp ‘ ||
‘where empNo=:var01’; ➞11

execute immediate v_sql_tx
into v_out_tx
using i_empNo; ➞13
return v_out_tx;

exception
when others then return null;

end;

Here are the details about certain important lines in Listing 13-5:

➞11 Defines the bind variable :var01. At runtime, it will be substituted
with the value of i_empNo. That variable can be called the bind
argument.

➞13 Passes arguments with the USING clause.

Passing several bind variables
Bind variables can be considered as parameters. You’re using them to pass
values into some special entities (for parameters, into stored procedures; for
bind variables, into dynamic SQL). You can have as many bind variables as
you want by using the following syntax:

execute immediate
‘...:var1,:var2,:var3...’ (code with bind variables)

using
v_A,v_B,’Y’...(comma-separated list of values/variables)

For example, if the task is to find the highest value of any column for any pair
of employees, you could use Listing 13-6.

Listing 13-6: Using Multiple Bind Variables

create or replace function f_getMax
(i_empNo1 NUMBER,i_empNo2 NUMBER,i_column_tx VARCHAR2)

return VARCHAR2
is

v_out_tx VARCHAR2(2000);

(continued)

319Chapter 13: Dynamic SQL and PL/SQL

21_599577 ch13.qxp 5/1/06 12:17 PM Page 319

Listing 13-6 (continued)
v_sql_tx VARCHAR2(2000);

begin
v_sql_tx :=

‘select max(‘||i_column_tx||’)’|| ➞9
‘ from emp ‘ ||
‘where empNo in (:var01, :var02)’; ➞11

execute immediate v_sql_tx
into v_out_tx
using i_empNo1, i_empNo2; ➞14
return v_out_tx;

exception
when others then return null;

end f_getMax;

The following are details about Listing 13-6:

➞11 Defines two bind variables in the script.

➞14 Passes two bind variables into the dynamic script. Keep in mind
that the order and number of real variables in the USING clause
must exactly match the way in which the bind variables appear in
the script.

You might wonder why concatenation is used (line 9) instead of passing the
column name as a parameter, too. Although execute immediate ‘select
max(:var0)...’ using in_column_tx... would look much cleaner, it
isn’t valid syntax. Bind variables may not be used for columns in the SELECT
statement.

Bind variables can be used only to supply values to be passed to SQL code,
and not to define the structural elements of queries or PL/SQL blocks. Tables,
columns, functions, and operators are parts of the structure to be executed.
This is the reason why they must be completely prepared before parsing.
Otherwise, how could Oracle build an execution plan? Bind variables are
passed into the statement after parsing. This is the reason why everything
to do with structural elements must use string operators.

Understanding bind variable types
Bind variables are still just variables, which can be of type IN, OUT, or IN
OUT just like any other parameters.

By default, all parameters are of type IN, as shown in previous examples.
Listing 13-7 illustrates a typical situation for using bind variables.

Listing 13-7: Using an OUT Parameter

SQL> declare
2 a NUMBER;
3 b NUMBER:=1;

320 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:17 PM Page 320

4 c NUMBER:=2;
5 v_plsql_tx VARCHAR2(2000);
6 begin
7 v_plsql_tx =
8 ‘begin ‘ ||
9 ‘ :1:=:2+:3; ‘ || ➞9
10 ‘end;’’;
11 execute immediate v_plsql_tx ➞11
12 using out a, b, c; ➞12
13 DBMS_OUTPUT.put_line(‘a=’||a);
14 end;
15 /

a=3 ➞16
PL/SQL procedure successfully completed

Here are the details for Listing 13-7:

➞9 Defines three bind variables :1, :2, :3.

➞12 Passes three real variables a, b, and c. The first one is of type OUT,
the second and third are the default type IN.

➞11 Oracle adds the value of variable b to the value of variable c and
returns it back into variable a as requested for the output.

Reusing bind variables
One interesting feature of bind variables from the previous example is that in
PL/SQL you can reuse the same bind variable (in Listing 13-8; case :1, line 5)
multiple times, but pass the real value only once (line 6).

Listing 13-8 passes and retrieves the same variable a.

Listing 13-8: Reusing Bind Variables in Dynamic PL/SQL

SQL> declare
2 a NUMBER:=2;
3 b NUMBER:=3;
4 v_plsql_tx VARCHAR2(2000);
5 begin
6 v_plsql_tx =
7 ‘BEGIN ‘ ||
8 ‘ :1 := :1*:2; ‘ ||
9 ‘END;’;
10 execute immediate v_plsql_tx ➞10
11 using in out a, b; ➞11
12 DBMS_OUTPUT.put_line(‘a=’||a);
13 end;
14 /

a=6 ➞15
PL/SQL procedure successfully completed

321Chapter 13: Dynamic SQL and PL/SQL

21_599577 ch13.qxp 5/1/06 12:17 PM Page 321

Here’s what Listing 13-8 is doing:

➞10–11 Oracle works exactly as requested by passing the default value
of variable a (2) into the routine and multiplying it by the value
of a (3).

➞15 Returns a=6. Two-way communication was allowed because the
first bind argument was declared as IN OUT.

In dynamic PL/SQL blocks, Oracle counts only unique bind variables and
associates them with arguments in the order of their appearance. In Listing
13-8, there are two unique variables (:1 and :2). That is why you need only
two arguments (a and b).

The reusability of bind variables is not true for dynamic SQL statements, as
shown in Listing 13-9.

Listing 13-9: Reusing Bind Variables in Dynamic SQL

declare
v_nr NUMBER:=100;
v_where_tx VARCHAR2(2000):=’deptNo=20’;
v_sql_tx VARCHAR2(2000);

begin
v_sql_tx:=

‘update emp ‘ ||
‘ set sal=:1, comm=:1 ‘ || ➞7
‘where ‘||v_where_tx;

execute immediate v_sql_tx
using v_nr, v_nr; ➞10

end;

Here’s what’s happening in Listing 13-9:

➞7 Although bind variable :1 is the same, Oracle associates bind
variables by position, not by name.

➞10 You have to pass the same value twice.

Using a NULL bind variable
Although we indicated that you could use either variables or literals as bind
parameters, there are some restrictions: You cannot explicitly pass any
Oracle literals (NULL, TRUE, FALSE). Listing 13-10 shows how to pass a NULL
value via the variable.

Listing 13-10: Using a NULL Variable

declare
v_null_nr NUMBER:=NULL; ➞2
v_where_tx VARCHAR2(2000):=’deptNo=20’;

322 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:17 PM Page 322

v_sql_tx VARCHAR2(2000);
begin

v_sql_tx:=
‘update emp ‘ ||
‘ set sal=:1, comm=:1 ‘ ||
‘where ‘||v_where_tx;

execute immediate v_sql_tx
using v_null_nr, v_null_nr; ➞11

end;

➞2, 11 The only way to pass NULL is by using the variable.

Getting a value with a RETURNING clause
Listing 13-11 shows that there are other ways besides using a SELECT state-
ment to return a value.

Listing 13-11: Using a RETURNING Clause (a)

create or replace function f_appendDept_tx
(i_deptNo NUMBER, i_column_tx VARCHAR2,
i_append_tx VARCHAR2)
return VARCHAR2

is
v_out_tx VARCHAR2(256);
v_sql_tx VARCHAR2(2000);

begin
v_sql_tx:=’update dept set ‘||i_column_tx||’=’||

i_column_tx||’||:1 where deptNo=:2’||chr(10)||
‘ returning ‘||i_column_tx||’ into :3’; ➞11

DBMS_OUTPUT.put_line(v_sql_tx);
execute immediate v_sql_tx

using i_append_tx, i_deptNo, out v_out_tx; ➞14
return v_out_tx;

end f_appendDept_tx;

Here’s what’s going on with Listing 13-11:

➞11 Uses an UPDATE statement with a RETURNING clause to return a
value.

➞14 Builds the statement by using the appropriate variable as an OUT
parameter.

You can split the output line by using a special character CHR(10) (line 10 in
the preceding example). It is basically a “Carriage Return” command. The
Oracle parser ignores it, but it makes the generated code easier to read.

Listing 13-11 shows a function that could be used to append any string to any
column of the DEPT table and return a new value as a result of the update. This
trick is extremely useful because it allows you to get the new value without

323Chapter 13: Dynamic SQL and PL/SQL

21_599577 ch13.qxp 5/1/06 12:17 PM Page 323

extra querying. This means one less round trip to the database. An example
of the function usage is shown in Listing 13-12.

Listing 13-12: Using a RETURNING Clause (b)

SQL>begin
2 DBMS_OUTPUT.put_line
3 (f_appendDept_tx(30,’dname’,’+’)); ➞3
4 end;
5 /

update dept set dname=dname||:1 where deptNo=:2
returning dname into :3
SALES+ ➞8
PL/SQL procedure successfully completed.

➞3 Adds the symbol ‘+’ to the end of the DNAME column of depart-
ment 30 and sends new value to the output (line 8).

Return information using cursor variables
Dynamic SQL allows you to build whatever you want on the fly, but how is
this code executed? For example, if you have a generic routine that deletes
rows from any table, a logical question would be: Can I find out how many
rows were deleted?

The answer is “Yes.” Oracle opens an implicit cursor to execute the dynamic
SQL you’re building. By using “SQL” to refer to the implicit cursor, you can
use any of the cursor variables discussed in Chapter 6, such as %ROWCOUNT.
Listing 13-13 shows an example of how this works.

Listing 13-13: Dynamic SQL and Cursor Variables

create or replace function f_delete_nr (i_tab_tx VARCHAR2)
return NUMBER

is
begin

execute immediate ‘delete from ‘||i_tab_tx; ➞5
return SQL%ROWCOUNT; ➞6

end;

➞5–6 Because the DELETE statement opens an implicit cursor, the
results of the execution are retrieved.

You can prove this by using the following code:

SQL> begin
2 DBMS_OUTPUT.put_line(‘Deleted:’||f_delete_nr(‘EMP’));
3 end;

324 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:17 PM Page 324

4 /
Deleted: 14
PL/SQL procedure successfully completed.

Building DDL on the Fly
Listing 13-13 shows you how to use a generic routine to delete from any table.
But what about a generic routine to drop any database object? As you already
know, there is no way to place DDL statements (drop function, create table,
and so on) into PL/SQL. But with dynamic SQL, this restriction is removed.

Dynamic SQL allows you to do whatever you want with database objects as
long as the user has the appropriate privileges to execute the statement. For
example, the following routine will drop any function from the schema:

create or replace procedure p_drop_function
(i_function_tx VARCHAR2) is

begin
execute immediate ‘drop function ‘||i_function_tx;

end;

When building DDL on the fly, you can easily create deadlocks. For example,
you could modify the preceding code to drop any procedure, as shown here:

create or replace procedure p_drop_procedure
(in_proc_tx VARCHAR2) is

begin
execute immediate ‘drop procedure ‘||in_proc_tx;

end;

If you try to drop the procedure p_drop_procedure itself, the code creates
a deadlock:

SQL> begin
2 p_drop_procedure(‘p_drop_procedure’);
3 end;
4 /

begin
*
ERROR at line 1:
ORA-04021: timeout occurred while waiting to lock object

SCOTT.P_DROP_PROCEDURE
ORA-06512: at “SCOTT.P_DROP_PROCEDURE”, line 4
ORA-06512: at line 2

There is another major caveat when using dynamic DDL. All DDL statements
always fire implicit commits, as shown in Listing 13-14.

325Chapter 13: Dynamic SQL and PL/SQL

21_599577 ch13.qxp 5/1/06 12:17 PM Page 325

Listing 13-14: Implicit COMMITS in DDL Statements (with Bug)

create or replace procedure p_removeDept
(i_deptNo NUMBER) is

begin
savepoint A;
update emp ➞5
set deptNo=10 -- temporary department
where deptNo=i_deptNo;

p_drop_procedure (‘p_summary_’||i_deptNo); ➞9

delete from dept ➞11
where deptNo=i_deptNo;

exception
when others then

rollback to savepoint A; ➞15
raise;

end p_removeDept;

The following list gives you the details on Listing 13-14:

➞5 Reassigns employees from the department to be deleted to the
temporary one.

➞9 Removes the summary procedure.

➞11 Removes the department itself.

➞15 If something goes wrong, a ROLLBACK is included in the exception
handler to clean up any changes made in the current routine. This
is the reason why you should use a partial (not full) rollback to
the savepoint. Otherwise you could roll back changes made in
other routines, too.

However, because the f_drop_procedure includes DDL, the rollback will be
meaningless. After line 9, all changes to the EMP table are committed to the
database (implicit COMMIT). If something does go wrong when deleting the
department (for example, a lock from another application on the record
you’re trying to delete), these changes won’t be canceled.

A better way to accomplish the same goal is shown in Listing 13-15.

Listing 13-15: Implicit COMMITS in DDL Statements (Bug Fixed)

create or replace procedure p_removeDept
(i_deptNo NUMBER) is

begin
savepoint A;
update emp
set deptNo=10 -- temporary department
where deptNo=i_deptNo;

326 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:17 PM Page 326

327Chapter 13: Dynamic SQL and PL/SQL

delete from dept
where deptNo=i_deptNo;

p_drop_procedure (‘p_summary_’||i_deptNo); ➞12
exception

when others then
rollback to savepoint A;
raise;

end;

➞12 Calls the procedure with DDL inside after all DML operations are
complete. In this case, there will be no COMMIT until all the main
activity is completed. This is a significantly safer way to code.

But there is an even better solution. Wrapping any code that dynamically gen-
erates DDL statements (or any other code that forces an implicit COMMIT) into
autonomous transactions can prevent a number of problems, as shown here:

create or replace procedure p_drop_procedure
(i_proc_tx VARCHAR2) is

pragma autonomous_transaction;
begin

execute immediate ‘drop procedure ‘||i_proc_tx;
end;

Using this approach, you can place the call to that procedure anywhere in
your code with no impact to the main routine at all.

In most cases, procedures and functions that generate DDL should be defined
as autonomous transactions. This way you can be sure that they won’t inter-
fere with the logic of the core application. In addition, they can be used any-
where you want (triggers, SELECT statements, and so on).

Using Quoted Strings with Dynamic SQL
Using dynamic SQL can be a bit confusing when working with string literals.
For example, in the generic routine to provide summaries for each depart-
ment, each of the summary routines requires a parameter to be passed

procedure p_summary_10(i_upload_yn VARCHAR2) .

What if you wanted to hard-code “Yes” (‘Y’) for the i_upload_yn parame-
ter? The code you’re trying to execute might look like this:

begin p_summary_10(‘Y’); end;

The routine to generate this could be dynamically hard-coded, as shown here:

21_599577 ch13.qxp 5/1/06 12:17 PM Page 327

create or replace procedure p_summary (i_deptNo NUMBER)
begin

execute immediate
‘begin p_summary_’||i_deptNo||’(‘’Y’’); end;’;

end;

The two single quotes around the Y are required: If you want to have a single
quote in the string of the code, you must include two single quotes. The best
way of dealing with this issue is to have an example of the code you’re plan-
ning to build. This will significantly decrease the debugging time required.

Alternatively, you could use the following code to pass ‘Y’ with a bind variable:

create or replace procedure p_summary (i_deptNo NUMBER)
begin

execute immediate
‘begin p_summary_’||i_deptNo||’(:1); end;’

using ‘Y’;
end;

What happened? The quotes disappeared. Oracle understands that you’re
passing variable of type VARCHAR2 and builds the binding appropriately. But
any time you’re building the string manually, you should check the consis-
tency of quotes carefully.

Working with Advanced Datatypes
The previous sections in this chapter discuss only the basic datatypes. But
what about objects, records, and collections? Dynamic SQL works with them,
too. For example, assume that you have an application, where you need to
display any record from the database as a pair such as [ID; Display Value].
This could be very useful if you are building a generic data viewer.

Listing 13-16 shows how to create an object with the appropriate columns to
be returned. The logic is fairly simple because you’re passing all the parts
you need into the routine.

Listing 13-16: create type Illustrated

create type lov_oty is object
(id_nr NUMBER, display_tx VARCHAR2(256));

create or replace function f_getDisplay_oty
(i_table_tx VARCHAR2, ➞5
i_id_tx VARCHAR2, i_display_tx VARCHAR2, ➞6
i_pk_tx VARCHAR2, i_value_nr NUMBER) ➞7

return lov_oty

328 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:17 PM Page 328

is
v_out_oty lov_oty;
v_sql_tx VARCHAR2(2000);

begin
v_sql_tx := ‘select lov_oty(‘|| ➞13

i_id_tx||’,’||i_display_tx||
‘) from ‘||i_table_tx||
‘ where ‘||i_pk_tx||’=:1’;

execute immediate v_sql_tx into v_out_oty
using i_value_nr ;

return v_out_oty;
end f_getDisplay_oty;

Here’s how Listing 13-16 works:

➞5 i_table_tx allows you to identify a source of the data.

➞6 I_ID_TX and i_display_tx define what columns/expressions
should be used to display detected record.

➞7 I_PK_TX and i_value_nr allow you to uniquely identify a record
to be displayed.

➞13 In the SELECT statement, two selected columns are wrapped into
an object type. The returning value will be a single attribute of type
Lov_ty rather than two columns from the table, as shown here:

SQL> select f_getDisplay_oty (‘dept’,’deptNo’,
2 ‘deptNo||’’-’’||dname’,’deptNo’,10)

dsp
3 from dual
4 /

DSP(ID_NR, DISPLAY_TX)
--
LOV_OTY(10, ‘10-ACCOUNTING’)
SQL>

This example builds a composite display value DEPTNO||’-’||DNAME and
passes 10 as a value for a primary key DEPTNO. As desired, the function
returned an object of type LOV_OTY.

Using BULK COLLECT with dynamic SQL
You can take this one step farther and work not just with objects, but object
collections. Assume, that you need to get the whole list of [ID; DisplayValue]
for the specified table. In that case, just an object isn’t enough. You need the
whole object collection:

create type lov_nt as table of lov_oty;

329Chapter 13: Dynamic SQL and PL/SQL

21_599577 ch13.qxp 5/1/06 12:17 PM Page 329

Chapter 11 explains how you can fetch results of the whole SELECT state-
ment into the collection by using BULK COLLECT. You can use that feature in
dynamic SQL, too, as shown here:

create or replace function f_getLov_nt
(i_table_tx VARCHAR2,
i_id_tx VARCHAR2, i_display_tx VARCHAR2,
i_order_tx VARCHAR2)

return lov_nt
is

v_out_nt lov_nt := lov_nt();
begin

execute immediate
‘select lov_oty(‘||i_id_tx||’,’||i_display_tx||’)’||

‘ from ‘||i_table_tx||
‘ order by ‘||i_order_tx

bulk collect into v_out_nt;

return v_out_nt;
end;

The logic is exactly the same as in the previous example. You build the query
on the fly, wrap the resulting columns as lov_oty type, and return the result.
The only difference is that you’re returning all the rows at once.

Dynamic OPEN...FOR
The preceding section shows you how to build SQL statements and PL/SQL
blocks dynamically. But it is also very useful to be able to build cursors at
runtime.

Imagine a set of requirements where you need to print a list of employees,
but you don’t know what the filter (WHERE clause) should be. The basic
implementation logic is as follows:

1. The cursor spins through table EMP.

2. The DBMS_OUTPUT.put_line procedure prints all needed information.

But there’s a major roadblock. How can you build a cursor if you don’t know
about the filter? (That is, what if you don’t know which columns and condi-
tions are needed in the WHERE clause in the SELECT statement?) Dynamic
SQL allows you to answer this question in conjunction with an Oracle con-
struct called REF CURSOR.

Chapter 6 discusses cursors that allow you to specify sets of data to be
processed. You can use this approach to create pointers to whole datasets.
But to define an Oracle cursor, you need to specify the query to use. REF

330 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:17 PM Page 330

CURSOR constructs are just logical pointers that don’t require you to specify
any query at the moment of declaration.

Creating a REF CURSOR datatype
To use REF CURSOR variables, you need to use a REF CURSOR datatype. The
REF CURSOR datatype cannot be used outside a PL/SQL environment.

There are two kinds of REF CURSOR types: weak and strong. A weak REF
CURSOR can point to any data set, as shown here:

declare
type weak_rcty is ref cursor;
c_weak rcty weak_rcty;

For small projects with limited scope, creating your own user-defined type
might be a viable strategy. However, in complex or multiple environment situ-
ations, it is a better idea to use built-in standard weak REF CURSOR datatype
to avoid confusion between developers, as shown here:

declare
c_weak sys_refcursor;

A strong REF CURSOR explicitly declares the type of data that can be refer-
enced. In the following example, only queries that return rows exactly as in
the EMP table are allowed:

declare
type strong_rcty is ref cursor return emp%ROWTYPE;
c_strong_rcty strong_rcty;

Defining your query with OPEN...FOR
Working with REF CURSOR variables is similar to working with explicit cur-
sors. (Cursor variables are also applicable to REF CURSORs.) You can define
your query directly in the special OPEN...FOR construct, instead of defining
the query when declaring the cursor, as shown here:

declare
type strong_rcty is ref cursor return

table%ROWTYPE;
c_strong_rcty strong_rcty;
v_table_rec table%ROWTYPE;

begin
open c_strong_rcty for select * from table;
loop

fetch c_strong_rcty into v_table_rec;
exit when c_strong_rcty%NOTFOUND;
...

end loop;
close c_strong_rcty;

end;

331Chapter 13: Dynamic SQL and PL/SQL

21_599577 ch13.qxp 5/1/06 12:17 PM Page 331

A complete discussion of how to use strong REF CURSORs is beyond the
scope of this book, but you can find information about them in Oracle’s
“PL/SQL User’s Guide and Reference,” available on OTN.

You can work with a cursor without declaring the full SELECT statement in
the declaration part of the code. Taking this one step farther, you can open a
cursor against a STRING representing the SELECT statement, as shown here
(in this case you have to use weak REF CURSORs):

declare
c_weak_ref SYS_REFCURSOR;

begin
open c_weak_ref for ‘any_select_statement_you_want’;

...
end;

Or

declare
v_string_tx VARCHAR2(32000);
c_weak_ref sys_refcursor;

begin
v_string_tx:= ‘any_select_statement_you_want’
open c_weak_ref for v_string_tx;

...
end;

Using this code structure provides part of the required code, as shown in
Listing 13-17.

Listing 13-17: Using a Weak REF CURSOR

create or replace procedure p_report
(i_where_tx VARCHAR2)

is
c_emp_ref sys_refcursor; ➞4

begin
DBMS_OUTPUT.put_line(‘-----------------------’);
open c_emp_ref for ➞7
‘select * from emp where’|| i_where_tx; ➞8
loop

fetch c_emp_ref into ???;
exit when c_emp_ref%NOTFOUND;
DBMS_OUTPUT.put_line(???);

end loop;
DBMS_OUTPUT.put_line(‘-----------------------’);

end;

332 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:17 PM Page 332

See the following details about the code in Listing 13-17:

➞4 Builds a cursor variable. As we mention earlier, it is better to use
the Oracle predefined datatype SYS_REFCURSOR for weak REF
CURSORs instead of defining one of your own.

➞7–8 Opens the cursor variable for the whole SELECT statement to be
built on the fly.

Telling Oracle what to data to return
There is one missing part of the code in Listing 13-17 . . . namely, where to
fetch? That question is a bit trickier to answer than you might think. Because
you’re building the SELECT statement dynamically, Oracle has no way to
check the kind, number, or type of columns you’re planning to return.
Because you’re planning to return all columns, you have three alternatives:

� Explicitly declare variables for each column with the appropriate
datatype. If the number of columns is more than a few, it could make
future maintenance very difficult.

� Declare a variable of type RECORD with all variables in it. This solution is
viable, but it still raises the issue of maintenance.

� Declare a variable of EMP%ROWTYPE. This is the best choice because
you’re getting datatypes directly from EMP and don’t care about any pos-
sible changes.

An example of how to use EMP%ROWTYPE is shown in Listing 13-18.

Listing 13-18: Using %ROWTYPE

create or replace procedure p_report
(i_where_tx VARCHAR2)

is
c_emp_ref sys_refcursor;
v_emp_rec emp%ROWTYPE; ➞5

begin
DBMS_OUTPUT.put_line(‘-----------------------’);
open c_emp_ref for

‘select * from emp where ‘ ||i_where_tx;
loop

fetch c_emp_ref into v_emp_rec; ➞11
exit when c_emp_ref%notfound;
DBMS_OUTPUT.put_line(v_emp_rec.empNo||’ ‘ ➞13
|| v_emp_rec.eName||’ - ‘|| v_emp_rec.job);

end loop;
DBMS_OUTPUT.put_line(‘-----------------------’);

end p_report;

333Chapter 13: Dynamic SQL and PL/SQL

21_599577 ch13.qxp 5/1/06 12:17 PM Page 333

Here are the details relevant to Listing 13-18:

➞5 Creates a new variable v_emp_rec.

➞11 Fetches the cursor variable into it.

➞13 All information about the employee is available so you can print
anything required.

Use the following code to verify the functionality:

SQL> begin
2 p_report(‘deptNo=10’);
3 end;
4 /

7782 CLARK - MANAGER
7839 KING - PRESIDENT
7934 MILLER - CLERK

PL/SQL procedure successfully completed.

The result is exactly what you wanted. It lists all the employees in depart-
ment 10.

334 Part V: Taking PL/SQL to the Next Level

21_599577 ch13.qxp 5/1/06 12:17 PM Page 334

Chapter 14

PL/SQL Best Practices
In This Chapter
� Understanding why best practices are important

� Becoming a good PL/SQL programmer

� Following the code-writing process

� Testing your code

Many people believe that being a good PL/SQL programmer means
knowing all about the latest features, obscure syntax for commands in

the packages, VARRAYs, object collections, and so on. Knowing all these
things means that you’re knowledgeable about the PL/SQL language, but it
doesn’t make you a good PL/SQL programmer.

Well-written code executes within a reasonable period of time, provides good
performance, and is bug-free whenever possible. But even more important,
the code is structured in such a way that you can be assured that it does
what it is supposed to do, and when modifications are necessary, you can
easily see where they are needed. To help you create code that meets these
goals, this chapter discusses some important best practices to keep in mind
when programming in PL/SQL. These best practices are taken from our expe-
riences in building real systems.

Why Are Best Practices Important?
If you aren’t an experienced programmer, the idea of general “best practices”
might not make much sense. The following are some examples from actual
systems where failure to follow these best practices caused companies to
lose hundreds of millions of dollars. In each case, the mistakes were not
made by students or people unfamiliar with PL/SQL, but by consultants from
well-known consulting firms doing work for very large companies on highly
visible projects. Each one resulted in catastrophic software failures for differ-
ent reasons:

22_599577 ch14.qxp 5/1/06 12:17 PM Page 335

� The code ran so slowly that it made the system unusable. It would have
taken 26.5 years for a month-end routine to run.

� The code was so difficult to modify that it took three and a half months
to change the code in order to add a single attribute to one table.

� The system included so many complex rules that, even after years of
development, it never worked.

These failures were all due to the way in which the software and its underly-
ing code were designed and constructed — not because the programmer
didn’t know how to use a particular command.

Laying the Groundwork for Good Coding
Coding is 90 percent thinking and 10 percent actual writing of the code. In the
sections that follow, we explain how to think through a program before you
write it. It is unlikely that you will ever undertake a PL/SQL project all on your
own, so you also have to be an effective member of the development team. So
this section also discusses ways that PL/SQL programmers can be good
system development team players.

Understanding the big picture
As a PL/SQL programmer, you might not have any control over the larger
system architecture, but you do need to understand that architecture in
order to create the appropriate code and integrate it into the rest of the
system. By system architecture, we mean the overall design and structure
of the system as a whole, including the following:

� The database design

� How and where the business rules will be enforced

� What programming languages are used

� How the programming algorithms will work

It is a very common mistake for programmers and developers to say some-
thing like “I don’t need to understand the whole system; just tell me what you
want the code to do.” But being that shortsighted is one of the reasons that
systems fail. To program well, you should:

� Know what the business function is for your code. You should also be
able to accurately describe what your code does in terms that users can
understand. The more clearly you can express what the code is intended
to do, the more likely it is that the system will actually satisfy the user

336 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 336

requirements. For example, when asking for help in debugging an algo-
rithm, the first question that a good programmer should ask is, “What is
the code supposed to do from a business perspective?” Until you under-
stand the answer to that question, you won’t be able to successfully
debug the code.

� Keep a copy of the system data model showing the relevant portion of
the database handy at all times. If there is no data model, you can draw
your own on a piece of paper. Having and understanding the data model
is important because you need to understand where the code you’re
writing fits into the bigger system. By keeping a copy of the entire
system data model handy, you can continually check to make sure you
understand what your piece of code is supposed to do and what other
portions of the system might be impacted by it. If you don’t understand
data modeling, see Database Development For Dummies, by Allen G.
Taylor (Wiley Publishing, Inc.).

Communicating effectively
As a developer, you probably spend no more than 30 percent of your time sit-
ting alone, in front of a terminal, writing code. Most of the time, you are work-
ing with a second developer (or pair programming, as we discuss later in this
chapter), talking to someone about getting the system requirements, or figur-
ing out how to write the code.

In all three project failures that we mention earlier in this chapter, one
common mistake made was that people who were aware that the system
failures were likely to occur either neglected to call this to the attention of
the system architects or were ignored when trying to point out problems
with the system architecture. As the rules of the system are captured and
coded, you might discover that the architecture is inadequate to support the
system requirements. PL/SQL programmers should recognize possible prob-
lems in the system architecture and point these out to the database design-
ers and system architects so that the necessary changes can be made.

Creating a code specification
Before you ever start writing code, you need written specifications. Writing
good code specifications encourages developers to think about what the
code does and puts this information on paper. Having this document makes
talking to others about the code much easier and allows better sharing of
information. In modern development environments, it isn’t uncommon to
have Java and .NET developers on the same team as PL/SQL developers.
However, all these developers might be unable to read each others’ code.
A specification written in English or pseudo-code allows the document to
be readable by all members of the team.

337Chapter 14: PL/SQL Best Practices

22_599577 ch14.qxp 5/1/06 12:17 PM Page 337

A good code specification describes what the software or program modifica-
tion entails at a reasonable level of detail. The specification document should
describe the function of the code as well as outline key design decisions. For
example, the document should address the following questions:

� Why is this code or modification being written (in business terms)?

� What procedures will be created?

� How will these procedures be named?

� What modifications to the database (new tables, columns, and so on)
are required?

� What are the detailed design constraints, if any? (For example, “This is a
rarely called routine from the user interface. As long as it executes in
less than half a second, it is okay.” or “This is a critical batch routine
that must execute in under an hour.”)

The specification should also include any special factors that people need to
take into account when developing or testing. An example might be “This rou-
tine will be executed by many simultaneous users.”

By including all this information in the code specification, you significantly
increase the probability that the team will understand the requirements and
write good code. However, keep in mind that the goal is to create functioning
code, and not to create a large pile of documentation that few will read. Also,
don’t think that the code specification will be complete, accurate, or not
undergo changes as the project moves forward. As more code is written and
changes are needed, you might need to talk to users for additional clarifica-
tion about some undiscovered requirement or subtle area of the program.
Having the specification handy provides a starting point for discussion.

Writing Code with Best Practices in Mind
When you’re trying to decide how to proceed with coding a new project or
even making changes to an existing software project, how do you determine
the appropriate code structure? This section describes some of the things
you can do to write effective PL/SQL code that is maintainable over time, as
well as avoid some of the pitfalls common to many PL/SQL projects.

Stub out your code
Don’t just sit down and start writing code right from the beginning. First,
figure out how you want your code to be structured and create the necessary
procedure and function headers with no code in them. This gives you an idea
of what information will be needed at each point in your routine and what

338 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 338

each routine needs to return. These little stubs of code will help you see the
overall routine. If the project is a large one, you can then easily pass parts of
the code to someone else to write by using this “code outline.” By following
this stubbing method, your code will naturally be well structured and easier
to debug if something goes wrong.

Check the architecture as you go
Be sure that the underlying system architecture is sound before spending
days, weeks, or even months writing code. For example, one large batch rou-
tine we encountered was architected to make so many round trips to the
database that, even if all the complex logic that the program needed to per-
form executed in zero time, the program would never execute within an
acceptable time frame. It had to be almost entirely rewritten in order to per-
form adequately. In another situation, we designed a program to take precise
code statements and translate them into business language statements. The
first attempt to create the program was not able to logically manage the
required elements. Although this early version worked in limited circum-
stances, the code had to be completely rewritten before it was usable in the
larger system.

You can use the following tricks to ensure that the system architecture is
sound:

� Periodically take a step back and evaluate. Does the approach being
used make sense? Draw the algorithm on a white board and discuss it
with a colleague. Sometimes, the exercise of simply describing the algo-
rithm to someone else can help clarify your thinking and prevent serious
coding errors from occurring.

� Have someone review your code with you and make sure that it works.
Don’t be afraid to take the time to run some tests on your code.

� Check the performance time of your code and its memory require-
ments. Just because a particular architecture works well with a few
sample data points and a single user, the same code won’t necessarily
work on a production system with 100 million records and 200 simulta-
neous users. We discuss evaluating performance in more detail later in
this chapter.

� Don’t be afraid to discard code and start over. Despite the planning
and discussions, you might create a bunch of code and still feel that
something isn’t working right. Often, the pressure to keep everyone run-
ning along and covering ground is so great that no one bothers to notice
that the project is headed for failure. Stop periodically and ask these
questions: Is the team moving in the right direction? Will the team’s
current direction ultimately result in a working system?

339Chapter 14: PL/SQL Best Practices

22_599577 ch14.qxp 5/1/06 12:17 PM Page 339

You might face an almost irresistible temptation to forge ahead because
so much time and effort has been invested. Unfortunately, in many cases,
if your intuition is telling you that you’re going down a blind alley and the
code will never work correctly, it is probably right. You’re better off dis-
carding all the old code and starting over rather than trying to fix badly
architected code.

“You can’t see the forest for the trees” is an important phrase to remember
when writing PL/SQL code. Don’t get so lost in endless routines that you lose
sight of the big picture. Every two weeks, you should climb to the top of the
tallest tree around (figuratively speaking, of course) to see where you are, make
sure you’re still going in the right direction, and look out for any nasty obstacles
between you and your goal. Then climb back down the tree, have a group meet-
ing, and have the project manager clearly point in the direction where everyone
should be heading. As silly as this sounds, you can’t imagine the number of
huge project failures that could have been prevented by using this strategy.

Prove code works with test cases
The first time you use a feature that you haven’t used before, make sure you
understand how it works by writing a separate, small, example program to
demonstrate its functionality. Similarly, when you’re embedding a complex
expression such as a combination of INSTR and SUBSTR or regular expres-
sions, isolate the piece of code in a simple SQL expression to prove that the
code is correct. This can save you hours of debugging time later. The way
you can prove that your code works is by setting up small test cases by using
DBMS_OUTPUT statements to print out interim results. Do this frequently for
each section of code written.

Use code libraries
Although it’s easy to think you’re the only person who will ever need to use
the code that you write, this usually isn’t the case. If you look at any large
system, you will find that the same code has been written dozens of times
(frequently by the same developer). If that code had been placed in a code
library and referenced each time it was used, there would not only be less
code, but the remaining code would be less prone to errors. Every time a
piece of logic is rewritten, there is the chance that the code will be written
slightly differently. This can cause code errors that are very difficult to find.

Code that you write needs to be well documented and placed where it can be
reused easily. Code that is used only once in a large system is the exception
rather than the rule. You probably will have hundreds of reusable compo-
nents in a large system, so you need to divide them into logical packages to
avoid losing track of them.

340 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 340

Keep the code maintainable
The technology to support the myriad of information systems being used to
work with databases seems to evolve faster and faster with each passing
year. Designing and coding a system that can be used and easily maintained
over time requires some thought and skill. Make sure that someone else
down the road will be able to read and understand your code and find poten-
tial problem areas. You can find additional information about writing main-
tainable code in Chapter 9.

Don’t forget about performance
In addition to understanding what the program you’re creating needs to do,
you need to have some sense about how fast the code needs to execute and
return the desired information. If you’re creating a month-end routine that
must interact with other batch routines and execute within a 4-hour time
window, your portion of the program might need to execute in 10–20 minutes.
Understanding what constitutes acceptable performance in a given situation
is very important.

You also need to know how often a given programming routine will be run.
PL/SQL is capable of supporting a range of capabilities, some of which are
used only once, such as data migration routines or low-level translations for
changing system time into local time around the world that might be accessed
millions of times a day. If a routine will be run only once, performance and
maintainability of the code are not critical issues. See “Testing Your Code”
later in this chapter for more details about evaluating performance.

Be careful before deciding that a routine will never be used again and discard-
ing the code. Very often, you will find that you need to run the same or a very
similar routine to one you wrote a few months ago.

Compile as you go
We mention earlier in this chapter that you don’t want to just start writing
code. Here, we expand on that point by reminding you that you don’t want to
write code without compiling it as you go, either.

Many inexperienced programmers create an entire first draft of a program
(possibly hundreds of lines of code) without ever compiling it. When they do
compile the code for the first time, hours of debugging are usually required.
Writing more than a few lines of code without at least one mistake is very
unusual, even for experienced programmers. Sometimes errors are nothing
more than simple misspellings or typos, but errors are always there.

341Chapter 14: PL/SQL Best Practices

22_599577 ch14.qxp 5/1/06 12:17 PM Page 341

Compile your code every few minutes from the very beginning of the process.
For example, when writing a new function or procedure, create the function
name with one line of code (which might even be NULL;) and save it before
doing anything further. Every few lines, compile the code again to see
whether there are any errors.

Never write more than about ten lines of code without compiling it.

Debug the timesaving way
If your code doesn’t work, how can you fix it? It might not compile or it might
compile and not do what you expect it to do. The process of identifying and
fixing errors in code is called debugging. (Legend has it that the term origi-
nates from an early computer that malfunctioned because a moth got into
the circuitry and caused a short circuit.)

The most important thing to remember when debugging is to always start
with a piece of code that works. This means that the first step to take when
the code won’t compile or behave as expected is not to look through the
code to try to find the problem. Instead, comment out portions of the code
until the code runs successfully. The point is to find out precisely where the
problem is occurring. Programs can be made up of thousands of lines of
code. The problem might not be located in an obvious place.

When a developer asked one of the authors for assistance in debugging a
very complex routine where the developer had spent many hours looking for
the problem, the authors immediately tried to determine whether the identi-
fied routine was indeed causing the problem. The author commented out the
entire routine and re-executed the program. Within five minutes, it was clear
that there was nothing wrong with the routine. The mistake was in the code
calling the routine.

Commenting
For the reasons stated in the preceding section, the main debugging tech-
nique to use is commenting out parts of your code. This allows you to remove
selected portions of the code to help isolate problems quickly and efficiently.
This same technique can be used for both compilation and logic errors.

The SQL compiler isn’t perfect. Sometimes it will indicate that an error exists
in a place that is far from the actual mistake. Unfortunately, this often occurs
in some of the most common types of errors, namely forgetting a semicolon,
missing a comma in a SELECT statement, and missing an END statement. (We
discuss these errors in more detail in Chapter 3.)

With a compilation error, the error message might not be very helpful. The
best strategy is to not let your routines get too large in the first place. If you

342 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 342

limit your routines to no more than a few hundred lines, even a problem that
results in a misleading compilation error might not be too difficult to find.

When your routine is in a package, it is common for packages to contain
hundreds, if not thousands, of lines of code, and finding an error will be
more difficult without using the commenting technique to sequentially add
portions of the routine until the error is found. In complex routines, it is help-
ful to comment out individual lines to narrow down where the compilation
error is occurring.

The technique of commenting and un-commenting portions of a routine to
help isolate a problem is very easy to use. A programmer should always have
an idea about where to find the problem area in the code. It is acceptable not
to know how to fix the problem, but even beginning programmers should be
able to locate the precise trouble spot in the code.

Finding out what the program is doing at various points
If you’re using a PL/SQL Integrated Development Environment (IDE), it might
include some sophisticated debugging functionality that allows you to set
watches (where you can see the values of variables) and breakpoints (places
where you pause the program) in your code. Know how to use these because
they will greatly assist you in finding errors. Each IDE will have its own debug-
ging features. Consult the appropriate documentation for more details.

You might also want to use DBMS_OUTPUT or autonomous transactions to log
information to a database table (like the p_log_audit procedure we describe
in Chapter 12).

Testing Your Code
Often, the most reviled people on a software development project are the mem-
bers of the Quality Assurance (QA) team who test the code. They are the evil
nitpickers who get in the way of pushing things out the door. Inexperienced
developers will do anything they can to avoid the QA process. Experienced
developers recognize that no code is perfect. Having another set of eyes look-
ing at your code greatly reduces the chance that errors will be missed.

If the QA team does nothing more than making sure you’ve filled out the
proper paperwork and put a comment block at the top of your code, your QA
process isn’t sufficient. The QA process helps to make sure that code is well
written and that standards have been followed.

It isn’t enough to deliver a program after running it once without noticing any
errors or problems. You must be much more thorough. You must make sure
that your code does what it was intended to do.

343Chapter 14: PL/SQL Best Practices

22_599577 ch14.qxp 5/1/06 12:17 PM Page 343

Proving that the code you have written works in the way you expect is just as
important as writing it correctly in the first place. In recent years, software
testing has become a much more disciplined practice.

Testing code well is an extensive topic that goes far beyond the scope of this
book. There are many excellent books on software testing. Your organization
might have a dedicated testing group devoted to setting standards for writing
and testing code. This section briefly discusses how to write tests for your
code, how to manage the tests, and how these tests fit into the software
development cycle. Before you dig into the details, understanding the
following basics of testing is helpful:

� The essence of testing is the idea of an assertion. You assert that the
software will do X when Y happens. Each test can be translated formally
into such an assertion.

� Tests come in different types. Some tests are a manual set of steps
that need to be performed by a human tester. (College interns are
great resources for this kind of task.) However, whenever possible,
tests should be written as code scripts that can be easily run every
time someone modifies the code.

� Although creating and executing good tests is a huge expense, the cost
of delivering bad software is much more expensive than testing. If you
don’t test your code well, you might think it works, and then later some-
one will discover that the system has a problem. The problem might
require many hours (or weeks) to be tracked down and isolated. Then
many more hours (or weeks) will be spent figuring out how to fix the
code. As a result of the problem, the database might have incorrect data
in it that will require time to fix. Testing software is expensive, but not
testing software is much more expensive.

� Even thorough testing doesn’t guarantee perfect code. It isn’t possible
to test everything. The most you can do is ensure core functionality.
Anyone can easily miss subtle problems. Usually, the best approach is to
test all the main functions and deal with the bugs when they are found.

If your software has to be perfect, you have a very difficult job. Ensuring
perfection in software means that you will spend many times the devel-
opment cost of the software in testing that software. If you’re building
software where bugs can result in serious consequences, count on
spending lots of time testing. Software that controls medical devices,
some military systems, and systems that control financial institutions all
need to be tested differently from most business systems. Even then, it
is very hard to find every problem. In such cases, the errors can have
catastrophic effects on the organization. In one well-publicized software
error, a simple coding error caused a multi-billion dollar loss to AT&T
and an outage of phone service along most of the eastern seaboard.

344 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 344

What are you testing?
The first step in effective testing is knowing what the code is supposed to do.
Without written specifications (as we discuss earlier in this chapter), testing
is impossible because you don’t have anything to test the code against. The
essence of testing is to start with a functional specification. This is what you
use to see whether the code meets the requirements of the specification.

In addition to the basic functions of the code outlined in the code specifica-
tion, you have many other things to test, too, including the following:

� The operation of specific portions of your routine: You need to test the
exception conditions and verify that appropriate error messages are
issued in each context.

� Software performance: The code must continue to operate quickly in
the actual production environment. Code can perform very differently
when hundreds of users are on the system or when millions of rows are
in the tables.

� Naming and coding standards: Simply having standards is no guarantee
that those standards are actually being followed. Someone should check
to see that the code is written according to those standards.

In the following sections, we offer more details about testing performance.
We offer details on identifying exceptions in Chapter 5 and explain tips for
creating naming standards in Chapter 8.

Creating a testing architecture
The actual testing of your code involves making sure that the code does the
right task. The tests themselves should be written, saved, and rerun every
time there is a modification. To manage the testing code, you can either use a
package like Quest Software’s utPLSQL or create your own testing environ-
ment. Don’t just write tests in PL/SQL in a script without any testing architec-
ture. Otherwise, each developer on a team will come up with his or her own
ideas about how to test (assuming they write any tests at all).

Performance and load testing
Ensuring that your code is going to run well in a production environment is
the hardest test to do. It requires effectively simulating the actual production
environment. If you’re working on a large system, this can be very expensive.

345Chapter 14: PL/SQL Best Practices

22_599577 ch14.qxp 5/1/06 12:17 PM Page 345

The easiest way to make sure that your code will work well in production is
to have an exact copy of the production environment (including processes)
to simulate the normal production load on the system. If you’re working in a
multi-million dollar computer environment, this means setting up two copies
of the entire environment: one for production and one for testing. Because
this might not be economically feasible (for large systems), typically, the best
you can do is to create a smaller system that represents some fraction of the
production environment. In such cases, making the test environment as close
as possible to the production environment is essential.

It is absolutely essential that the test and production environments use the
same version of the Oracle DBMS, down to the exact patch release. With each
release, Oracle changes the way that both SQL and PL/SQL are executed. There
is no guarantee that code that works well in one release will perform the same
way in a different release.

It is also essential for the test system to have exactly the same database
objects as the production release. Differences in indexes, hints in SQL, and
even database statistics can have a profound effect on performance.

You must use the same application server software and front-end software for
testing (if applicable).

If the system will have hundreds (or thousands) of users or large batch jobs
might be running while the software is executing, you will need to simulate
the entire load on the real production system.

Tuning performance
After you have written a routine and verified that it does what it is supposed
to do, you need to consider the time required by the routine to execute its
task. If it doesn’t perform quickly enough, here are steps you can follow to
find and fix the problem:

1. Isolate the performance problem.

If a database procedure requires 10 seconds to execute, it might consist
of thousands of lines of code, probably combining both SQL and PL/SQL.
To identify the source of the problem, you need to scatter many timing
messages throughout the code to find the slow part(s).

Performance bottlenecks are typically found within a single SQL state-
ment. A cursor might be taking a long time to execute.

2. Extract the SELECT statement from the cursor and run it alone in SQL
Navigator, Toad, SQL*Plus, or whatever tool you’re using.

346 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 346

If this query takes 9.9 of the total 10 seconds to execute, you can be
fairly certain that you’ve found the problem code, and spending time
working on other portions of the code is a waste of time.

3. Tune the problematic part of the code and test the code as a whole
again.

Many developers spend hours reviewing slowly running code to try and
improve it because they don’t fully understand how to tune the code
efficiently. A full discussion of SQL performance tuning is beyond the
scope of this book. There are many helpful books and articles to consult
about this topic.

4. After tuning the problematic SQL statement, your code might still not
be running quickly enough. At this point, you need to refactor
(redesign) the algorithm in the code.

There is no general solution to this type of problem. Sometimes, you can’t
do anything to speed up the code processing. However, in some cases,
you can improve performance of PL/SQL by using various techniques:

• Tune the SQL (beyond the scope of this book).

• Minimize the number of database operations.

If you find that you do need to minimize operations, here are a few common
problems, where these operations can often be pared back:

� Repeatedly accessing the same object: This is a relatively common
mistake that can impact performance. For example, when retrieving a
record from the database, you should retrieve the entire record at once.
You shouldn’t individually retrieve each attribute. Conversely, when pro-
cessing an object where each operation updates an attribute, instead of
executing an UPDATE statement for each operation, make all the modifi-
cations to the object in memory and execute a single UPDATE statement.

As obvious as this might sound, many programmers make this mistake.
Object-oriented programmers tend to think in terms of getters (retrieve
information) and setters (update information) and view the database as
the means of storing persistent copies of classes. If a table contains 100
columns, this means the code will execute 100 separate SQL statements
to retrieve an object and 100 statements to update the object. (This is
one of the techniques that caused the month-end routine mentioned
at the beginning of this chapter to require 26 years to complete.) Few
experienced programmers make the mistake of using the getter/setter
method to interact with the database. However, it is common to see pro-
grams where the same object is inserted and later updated within the
same routine or updated multiple times.

� Retrieving information with too many cursors: Frequently, when informa-
tion must be retrieved from multiple tables, instead of writing a single SQL
statement that will return information from all the tables simultaneously,

347Chapter 14: PL/SQL Best Practices

22_599577 ch14.qxp 5/1/06 12:17 PM Page 347

developers might write individual cursors that are executed hundreds of
times to retrieve the same information. You can refactor a routine with
nested CURSOR FOR loops to require a single (although somewhat more
complex) query that needs to be executed only once.

Another place where multiple cursors might be hiding is in SQL where
one of the columns in the SELECT statement is a function that itself
invokes a cursor. For every row in that SELECT statement, the cursor
will be executed. Depending upon how the query is written, the cursor
might execute millions of times even though the query returns only a
few rows.

� Not using bulk operations: You can use SQL bulk operations to replace
or modify whole areas of PL/SQL code. When you need to update mil-
lions of rows in the database by using PL/SQL, traditional PL/SQL coding
techniques usually won’t suffice. You must adopt a different program-
ming style to support high-performance PL/SQL coding. This usually
requires using one or more of the bulk SQL operations used in conjunc-
tion with PL/SQL collections. A full discussion of this topic is beyond the
scope of this book. See Chapter 11 for some additional information
about bulk operations.

Minimizing calls to SYSDATE that involve a query to the database behind
the scenes can significantly impact performance. For example, looping
through a million records to compare a date to the SYSDATE, you should
calculate SYSDATE once in the header and reference it in the loop.

Note that the performance-tuning tips listed here don’t mention anything
about the way in which the PL/SQL code is written directly. Instead, most
involve database interaction and how the SQL is written. This is because
tuning problems are almost always due to the SQL or something that can be
fixed by using SQL. Very rarely is the problem with the raw PL/SQL code.

There is one exception. PL/SQL itself does not execute as quickly as code
written in a language like C. For example, if you need to perform millions of
complex mathematical operations and performance is an important issue,
you might want to consider moving the data to an external C routine that can
be called from PL/SQL. The only time you might encounter this type of
requirement is when trying to use PL/SQL to perform complex bulk mathe-
matical operations for a statistical, financial, scientific, or linear program.

“Good enough is best”
The expression “good enough is best” comes from the world of engineering. It
means that when an engineer is building something, there is a set of specifi-
cations that must be complied with. When these are met, the task is com-
plete. Spending additional time, money, and resources to meet a higher level
of specifications is considered wasteful and inappropriate. For example, if a

348 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 348

particular bearing must be manufactured to within +/- 0.1mm tolerance,
spending additional manufacturing resources to achieve 0.001mm tolerance
would be considered a waste of resources and might even result in a repri-
mand for over-engineering the process.

This same principle is true for software engineering. If the system require-
ment is that a routine provide subsecond response and tests show that the
routine executes in 0.5 seconds, the developer should stop work and recog-
nize that making the routine execute in 0.05 seconds isn’t a worthwhile task.
There are always other tasks to be accomplished.

Judgment must be used to temper this philosophy. If the requirement for a
user interface element is subsecond response but 10,000 users will, on aver-
age, execute the relevant operation 1,000 times per day, taking this operation
from 1 second to 0.9 seconds would save the organization many hours each
day. On the other hand, a routine that is only called once in a monthly batch
routine that executes in 10 seconds is not worth spending 3 hours to reduce
to 9 seconds because the organization will save only 12 seconds per year. You
need to think about the trade-offs between time and resources spent to
improve something and the purpose of the code being modified.

Low-level routines that might be executed millions of times in a single day
should be tuned as carefully as possible. For example, a routine that takes
the current system date and transforms it into local time might be called mil-
lions of times in a day and should be written as efficiently as possible from a
performance standpoint.

Coding the Agile Way
The Agile movement evolved in the mid-1990s as an alternative to the tradi-
tional, more structured waterfall development method. The Agile approach to
system development includes some very useful best practices for PL/SQL
developers.

Working together in Agile teams
Agile development teams aren’t so different from any other teams. However,
users have a greater role; more small meetings are held; and the core idea is
that, ultimately, it is the users’ system. Delivery cycles average 2 to 4 weeks
using a rapid response/adaptive process. Team members participate in plan-
ning, performance, and acceptance of work. The goal is to match the right
people with the right tasks as well as to take into account workloads, task
allocations, and resources. Team members work in close physical proximity.
Memos and other documents are replaced with more face-to-face communi-
cations. Team members have access to key users.

349Chapter 14: PL/SQL Best Practices

22_599577 ch14.qxp 5/1/06 12:17 PM Page 349

Agile teams are self-organized. They can be reconfigured multiple times for
best results. Decisions are made as part of a collaborative process with all
team members. The entire team is accountable for deliverables, which helps
to spread the responsibility. To make this work, skilled team members are
essential. They must be autonomous. Agile teams include “generalizing spe-
cialists.” The goal is to have these team members be experts in one or more
technical specialties. They try to master new skills in a number of areas. This
makes them better workers as part of a team with a better sense of the over-
all project.

Agile teams have several advantages over traditional software development
teams: Information moves more quickly and directly among team members,
decision-making time is reduced, feedback is rapid to encourage iterative
process, morale is improved, team members focus on individual areas of
competence, and the collaboration is organized.

Because of the rapidity of the process, productivity is also improved. Small
teams are easier to manage. More user involvement helps ensure that users’
requirements are being met. Focus is placed on tasks rather than roles. Each
IT person on the team is process focused, and communication is plentiful.

Programming in pairs
Another useful idea taken from the Agile approach is pair programming. Pair
programming is carried out by having two developers sit side by side to create
the same code. Logistically, pair programming can take place with one devel-
oper coding while the other might be preparing documentation, reviewing the
code, tracking down answers to system requirement issues, testing the code,
or writing test scripts. Pair programming provides automatic quality assurance
on all code. Because pairings are frequently changed, a unified coding standard
can be enforced with less deviation from printed standards. By having two
people working on code, productivity is improved because more attention is
devoted to the task at hand, and code or design errors might be caught early.

Delivering code quickly
In a pure Agile environment, very rapid delivery of a new version of the soft-
ware (deployment) every few weeks is important. However, for database sys-
tems, a 2–4 week deployment is lunacy. Training and data migration can’t be
adequately accomplished that quickly. Although deployment can’t be done
so quickly, a 2–4 week delivery from the developers to the testing team is
essential for project success. In this way, developers and users stay “hot” and
there is no danger of “analysis paralysis.” User acceptance testing works
against deliveries. Deployment is a business decision, but delivery is what
makes the process work.

350 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 350

Agile development still requires a project plan including the following
documents:

� A high-level plan describing the detailed steps for the first three months
including Task/Feature lists prioritized by users.

� A Strategy Document that describes the goals, objectives, and high-level
plan for the project.

� Possibly some system architecture white papers that describe, in detail,
the key technical aspects of the project.

In addition, weekly status reports should be prepared by the development
team summarizing the progress to date, listing any outstanding issues and
proposing tasks for the following two weeks.

Test first
Test first means writing tests to validate your software before you even write
the software. It is one of the most important concepts in Extreme Programming
(XP) and other Agile techniques. Every project would benefit from this tech-
nique, although it is most popular with Agile teams.

There is a strong philosophical foundation to test first. The idea is that you’re
always writing software to fulfill an established need. Test first formalizes
that need. The software needs to pass all its tests. If the tests formalize the
requirements of the software and the software passes all those tests, there is
a good chance that the software will meet the system requirements.

No code is accepted until it passes tests. In practice, tests are written and
modified as the code is written. No code is considered complete until tests
are written and passed. Test first not only drastically reduces the number of
bugs, but also makes versioning easier.

According to studies such as “A Structured Experiment of Test-Driven
Development” (Boby George and Laurie Williams, Information and Software
Technology 46 (2004), 337–342) moving to a test-first approach resulted in a
number of significant reductions in the following:

� Software bugs

� Delivery time for version 1 of software

� Cost of system version 1

� Cost of subsequent system versions

351Chapter 14: PL/SQL Best Practices

22_599577 ch14.qxp 5/1/06 12:17 PM Page 351

Keeping Up-to-Date with Oracle
SQL and PL/SQL are constantly evolving. With every release of Oracle, new
features are added and older features get better. The best practices of this
year will be outdated coding next year. Features that have been added in ver-
sion 9i and 10g of Oracle are used only by a minority of developers. So, how
do you stay up-to-date? In this section, we offer some helpful tips as well as
some useful resources for keeping current with the new releases.

Conventional wisdom isn’t always right
Your mother always told you that “just because everyone else does something,
that doesn’t mean you have to do it.” This applies to coding, too. Just because
conventional wisdom says to do something a certain way, that doesn’t mean it
is necessarily the best way.

Every time Oracle releases a new version, things change. New features are
added, and the performance characteristics of older features might change
drastically. CPUs and other hardware also change rapidly. Disk storage and
performance have gotten larger and faster by orders of magnitude in just a
few years. The cost of main memory has plummeted so that larger program
units are no longer a problem. There are a number of classic examples where
the prevailing conventional wisdom has changed radically in the last few
years.

� Explicit cursors (see Chapters 6 and 15) used to always be faster than
implicit cursors when doing a single row fetch. Several years ago, Oracle
fixed this problem, and now implicit cursors are marginally faster. The
new wisdom is that both implicit and explicit cursor calls both execute
so rapidly that the performance cost of using one or the other is, in
almost every case, negligible.

� Oracle’s management of tables with large numbers of columns used to
be problematic, so designers would routinely try to limit tables to a
handful of columns whenever possible. Database designers who have
kept up with Oracle’s improvements now recognize that tables with hun-
dreds of columns can be used without degrading performance.

� Oracle recently introduced bulk operations into SQL. The conventional
wisdom was that bulk operations were always faster than processing
records one at a time. Although it is true that, in most cases, bulk opera-
tions will significantly outperform single record operations, in many
cases, there is now no performance improvement at all.

352 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 352

When someone tells you to do X instead of Y, make sure he or she can
demonstrate the reasons. Create a test to quickly find out whether the new
conventional wisdom is accurate. After you’ve proven that a tidbit of conven-
tional wisdom is true or not, recognize that, as soon as any relevant variable
changes (new release of the database, operating system, or data characteris-
tics), you will need to reassess and retest the conventional wisdom.

You might be overwhelmed at the thought of trying to keep up with all the
possible changes that occur. But remember, you also don’t need to find the
absolute best solution to every problem. As we mention earlier in this chap-
ter, you don’t need to come up with perfect code, just code that meets the
requirements. You’ll have an easier time keeping up with the changes if you
check out the resources we discuss in the following sections.

Buy books
This book is designed to help you get started programming in PL/SQL. It is not a
complete reference. There are too many important features in PL/SQL to discuss
in any one book. Fortunately, plenty of good PL/SQL books are available on the
market. Most of them have been written by Steven Feuerstein (published by
O’Reilly), arguably the best author of PL/SQL references in the industry. As your
first purchase, you should buy his recent books. You should also look at Scott
Urman’s excellent PL/SQL book, Oracle Database 10g PL/SQL Programming, from
Oracle Press. After you’ve been coding for a while, you will easily be able to
read a PL/SQL complete reference book cover to cover. No matter how much
coding you’ve done, you’ll be amazed at how many things you didn’t know.

Go to conferences
One of the best-kept secrets in the industry is that you can see the same con-
tent at almost any large Oracle conference. The same speakers tend to go to
most of the national and regional conferences, and many frequent local
Oracle user group meetings, too. You’ll see more vendors and presentations
from Oracle employees at a large conference, but also pay more to attend.
For developers, the two best conferences are the Oracle Development Tools
User Group (ODTUG, www.odtug.com) and the Independent Oracle Users
Group (IOUG, www.ioug.org) annual conferences. Both are technically
focused events. ODTUG is geared for developers. If you’re also interested in
DBA topics, go to the IOUG conference. Oracle OpenWorld in San Francisco
(Oracle’s annual conference) usually has more Oracle marketing presenta-
tions and fewer user papers, but the most attendees and biggest vendor hall.
To find out the latest Oracle has to offer and hear it directly from Oracle, this
is the best conference to attend.

353Chapter 14: PL/SQL Best Practices

22_599577 ch14.qxp 5/1/06 12:17 PM Page 353

At a regional conference, you can almost as much technical content as
the national conferences, with less travel and for less money. The Rocky
Mountain Oracle User Group (RMOUG), the New York Oracle Users Group
(NYOUG), the Northern California Oracle User Group (NOCOUG), the Mid-
Atlantic Oracle Users Group (MAOP-AOTC), and others all host annual con-
ferences that have multiple tracks and provide excellent content.

Join your local Oracle user group
Join your local Oracle user group and get to know people. It’s helpful to know
someone you can call when you have a question. You should also become an
ODTUG and/or IOUG member. You’ll receive discounts for the conferences,
access to conference papers and presentations online, and well-written jour-
nals with technical articles about a variety of Oracle-related topics. Also,
many large companies have internal user groups where you can exchange
tips. Smaller companies might host brown bag lunches where you can pre-
sent useful tips. Be sure to take advantage of these resources, as well.

Use online resources
Surfing the Web is one of the best ways to find out about PL/SQL features.
Most conference papers are posted on one or more Web sites. You can also
post questions to various Internet list-serves and get your questions answered
(usually within a day). Probably the best list for PL/SQL questions is ODTUG’s
ODTUG-SQLPLUS-L list. You can sign up for this free list (you don’t even have
to be a member of ODTUG) at www.odtug.com.

354 Part V: Taking PL/SQL to the Next Level

22_599577 ch14.qxp 5/1/06 12:17 PM Page 354

Part VI
The Part of Tens

23_599577 pt06.qxp 5/1/06 12:17 PM Page 355

In this part . . .

The Part of Tens summarizes some of the best and worst
that we’ve encountered when writing PL/SQL code.

In Chapter 15, we have assembled useful tips gleaned from
our years of experience building database systems, both
large and small.

Chapter 16 describes some of the worst mistakes that
both beginner and experienced programmers often make
in their PL/SQL coding. By reading this chapter carefully,
hopefully you can take our advice and avoid making these
errors in your own code.

23_599577 pt06.qxp 5/1/06 12:17 PM Page 356

Chapter 15

Ten PL/SQL Tips
In This Chapter
� Using SELECT INTO with exception handling

� Listing columns explicitly in DML statement

� Using the NOCOPY hint for IN OUT parameters

� Making efficient function calls

� Using DDL commits

� Limiting functions to one return statement

� Passing parameters

� Debugging with WHEN OTHERS in the right way

� Knowing when to use implicit and explicit cursors

� Working with dates as numbers

Experienced PL/SQL developers can give you hundreds of tips based on
their programming experience. The list in this chapter represents ten of

the most useful ones we encountered in our work building real-world systems.

Use SELECT INTO Correctly
Each time you use SELECT INTO, remember that your query might return
more than one row or no rows at all. Therefore, you need to include excep-
tion handlers to take care of these situations if there is any possibility of
them occurring.

The reason this is so important is that your code might execute correctly for
many months before some unusual condition shows up that causes it to fail.
Then you can spend days trying to figure out what went wrong.

For example, if you want to write a function in which you take EMPNO as an
input parameter and return the EMPNO and ENAME of the person with highest
salary in the department, you would use something like the following:

24_599577 ch15.qxp 5/1/06 12:18 PM Page 357

function f_getTopEmp_tx (i_deptNo NUMBER) return VARCHAR2
is

v_max_sal_nr NUMBER;
v_out_tx VARCHAR2(2000);

begin
select max(sal) into v_max_sal_nr
from emp
where deptNo=i_deptNo;
select empNo||’ ‘||eName into v_out_tx
from emp
where sal=v_max_sal_nr and deptNo=i_deptNo;
return v_out_tx;

end;

At the first glance, the code looks fine, so you can run the following:

SQL> declare
2 cursor c_dept is
3 select deptNo, dName
4 from dept
5 order by deptNo;
6 begin
7 for r_dept in c_dept loop
8 DBMS_OUTPUT.put_line(‘Dept: ‘||r_dept.dName
9 ||’-’||f_getTopEmp_tx(r_dept.deptNo));
10 end loop;
11 end;
12 /
Dept: ACCOUNTING-7839 KING
declare
*
ERROR at line 1:
ORA-01422: exact fetch returns more than requested number

of rows
ORA-06512: at “SCOTT.F_GETTOPEMP_TX”, line 8
ORA-06512: at line 8

However, the result isn’t exactly what you wanted. Looking more closely at
the data in the EMP table, department 20 has more than one person with the
highest salary in the department. This is what caused the problem. In this
case, fortunately the problem was encountered right away. But what if you
wanted to find out which salesperson had the most sales in a given year? In
that case, the probability of more than one person having the exact same
sales amount is very low, so you might go a long time without ever noticing
the problem.

To fix the procedure, you might use something like Listing 15-1.

358 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 358

Listing 15-1: SELECT INTO with the Wrong Result

function f_getTopEmp_tx (i_deptNo NUMBER) return VARCHAR2
is

v_max_sal_nr NUMBER;
v_out_tx VARCHAR2(2000);

begin
select max(sal) into v_max_sal_nr ➞5
from emp
where deptNo=i_deptNo; ➞7
select empNo||’ ‘||eName into v_out_tx ➞8
from emp
where sal=v_max_sal_nr and deptNo=i_deptNo; ➞10
return v_out_tx;

exception
when too_many_rows then

return ‘<Multiple hits>’;
end;

Running the loop one more time produces a different (but not much better)
result.

SQL> /
Dept: ACCOUNTING-7839 KING
Dept: RESEARCH-<Multiple hits>
Dept: SALES-7698 BLAKE
declare
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at “SCOTT.F_GETTOPEMP_TX”, line 8
ORA-06512: at line 8

Here’s what you see going on in Listing 15-1:

➞5–7 Department 40 doesn’t have any employees at all. As a result, the
first query returns NULL. (Queries with grouping functions never
fail with NO_DATA_FOUND.)

➞8–10 The second query fails because there is nobody in the department.

To solve this problem, use Listing 15-2.

Listing 15-2: SELECT INTO with the Correct Result

function f_getTopEmp_tx (i_deptNo NUMBER) return VARCHAR2
is

v_max_sal_nr NUMBER;
v_out_tx VARCHAR2(2000);

begin
select max(sal) into v_max_sal_nr

(continued)

359Chapter 15: Ten PL/SQL Tips

24_599577 ch15.qxp 5/1/06 12:18 PM Page 359

Listing 15-2 (continued)

from emp
where deptNo=i_deptNo;
select empNo||’ ‘||eName into v_out_tx
from emp
where sal=v_max_sal_nr and deptNo=i_deptNo;
return v_out_tx;

exception
when too_many_rows then

return ‘<Multiple hits>’;
when no_data_found then

return ‘<Nobody found>’;
end;

Now your SELECT INTO function is ready to use:

SQL> /
Dept: ACCOUNTING-7839 KING
Dept: RESEARCH-<Multiple hits>
Dept: SALES-7698 BLAKE
Dept: OPERATIONS-<Nobody found>
PL/SQL procedure successfully completed.

If you’re working with the BULK COLLECT clause, you need to check for the
number of fetched records because the exception NO_DATA_FOUND is never
raised, even when no rows were fetched. See Chapter 11 (in the section about
the BULK COLLECT command) for an example.

Don’t Assume Column Order
in DML Statements

When you have a DML statement in your code, you should explicitly list the
columns you’re referencing. Never assume that the number and order of the
columns in a table or view are constant. Columns that are added to a table
later will break your code. Rebuilding your database might result in the
default column order being changed.

Using an INSERT statement as an example, assume you need a procedure to
create new departments and validate the data entered previously. You could
use code like the block shown in Listing 15-3.

360 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 360

Listing 15-3: An Improper INSERT Statement

procedure p_createDept
(i_deptNo NUMBER, i_dName VARCHAR2, i_loc VARCHAR2) is

begin
if length(i_dName)>10 then

raise_application_error
(-20999,’Department name is too long’);

end if;
insert into dept ➞8

values (i_deptNo, i_dName, i_loc); ➞9
end;

➞8–9 The code works, but it hides a major potential problem because
you didn’t explicitly list the columns in the DEPT table when you
created your INSERT statement.

If someone needs an extra column in the DEPT table such as Remarks (which
contains no critical data), you may assume that adding this column by using
the following code is safe:

alter table dept add remarks_tx VARCHAR2(2000)

Now your routine will stop working because there are more columns in the
DEPT table than values being passed in the INSERT statement. The same
problem will occur even without adding new columns. The DBA might rebuild
the DEPT table and switch the order of columns in the CREATE TABLE.

Protect the code by using something like Listing 15-4.

Listing 15-4: A Safe INSERT Statement

procedure p_createDept
(i_deptNo NUMBER, i_dName VARCHAR2, i_loc VARCHAR2) is

begin
if length(i_dName)>10 then

raise_application_error
(-20999,’Department name is too long’);

end if;
insert into dept (deptNo, dName, loc)

values (i_deptNo, i_dName, i_loc);
end;

If you’re working with a large number of columns, using variables of type
RECORD is a better approach (see Chapter 11 for more details about the
RECORD datatype). The previous example worked fine for a table with just
three columns. However, if you need to initialize a very complex row, the list
of columns can make your code incredibly messy and unmaintainable. To
avoid this problem, use Listing 15-5.

361Chapter 15: Ten PL/SQL Tips

24_599577 ch15.qxp 5/1/06 12:18 PM Page 361

Listing 15-5: Insert by Using RECORD Type Variable

procedure p_createDept
(i_deptNo NUMBER, i_dName VARCHAR2, i_loc VARCHAR2) is
v_row dept%ROWTYPE;

begin
if length(i_dName)>10 then

raise_application_error
(-20999,’Department name is too long’);

end if;

v_row.deptNo:=i_deptNo;
v_row.dName:=i_dName;
v_row.loc:=i_loc;

-- p_validate (v_row);

insert into dept values v_row;
end;

Using this approach, you don’t have to list anything in the INSERT statement,
because you’re inserting a variable into the DEPT table that is defined as a
row from the same table. Now there is no chance for inconsistency.

Here’s another good reason for having a variable of type RECORD: It’s a much
easier way of passing data to different routines. For example, you might have
a procedure (such as the p_validate procedure in this example) that will
perform validation for the data you entered. You would need to pass only one
variable and not a whole list of columns.

Use the NOCOPY Command
Use NOCOPY when passing an IN/OUT parameter to avoid passing by value.
This is mainly a performance rather than a logic issue.

Normally when you pass an IN/OUT parameter, Oracle makes a copy of the
parameter in memory and uses that copy in the called program unit. When
the program unit is executed, it copies the values back to the original vari-
able. Performing this operation once doesn’t take a lot of time, but in a proce-
dure that’s called thousands of times, the time can add up.

The previous section shows how to perform validation on a row from the
DEPT table by passing a record parameter, rather than a list of columns:

p_validate (v_row);

362 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 362

The p_validate procedure might look like Listing 15-6.

Listing 15-6: Validating Rows

procedure p_validate(io_dept_rec in out dept%ROWTYPE) is
v_count_nr NUMBER;

begin
if io_dept_rec.dName!=

f_checkString_tx(io_dept_rec.dName)
then

io_dept_rec.remarks_tx:=io_dept_rec.remarks_tx
||chr(10)||’Error: DNAME contains invalid chars!’;

end if;
if io_dept_rec.loc is null then

io_dept_rec.loc := ‘UNKNOWN LOC’;
io_dept_rec.remarks_tx:=io_dept_rec.remarks_tx

||chr(10)||’Warning: LOC not specified!’;
end if;

end;

The idea is simple. Take the record as an input/output parameter and run a
number of tests. The tests may simply detect problems or attempt to correct
minor issues by modifying the original data. Place a report on the results in
the remarks_tx column and return the (potentially updated) record.

What you’re actually doing is passing the same record in and out of the pro-
cedure. But each time the procedure is called, the database has to create a
local copy of the input/output variable. In the case of simple parameters such
as numbers or dates, it isn’t much of an issue, but it can be with memory-
consuming items such as records, objects, and collections. To decrease the
performance overhead, give Oracle the hint NOCOPY (which we also discuss
in Chapters 3 and 11), as shown here:

procedure p_validate(io_dept_rec in out NOCOPY
dept%ROWTYPE) is ...

Now the validation routine won’t take a value from the original record and
make a local copy. Instead, it will take a pointer to the original record and
update the original record appropriately.

NOCOPY is just a hint, not a directive. This means that Oracle may ignore it. Also,
depending upon the version of Oracle used, there are a number of restrictions
on using NOCOPY. But if you violate one of those restrictions, there will be no
raised error. Oracle will ignore your hint without notifying you.

Another thing to be aware of when using a NOCOPY hint is exception handling. If
you’re passing a variable by value to a subroutine and that routine fails, the orig-
inal value of the variable doesn’t change. But if you’re passing the variable by

363Chapter 15: Ten PL/SQL Tips

24_599577 ch15.qxp 5/1/06 12:18 PM Page 363

reference, the failed subroutine might have changed the original variable’s
value (before it failed), unless you have an exception-handling block in that
subroutine.

Be Careful of Function Calls
That Impact Performance

If you have a loop and need to calculate some values, ask yourself whether
you can perform the calculations before the loop, or reduce the number of
times the calculations are performed within the loop. Otherwise, you might
be running the same function many more times than needed.

For example, you might have a function that takes EMPNO as a parameter and
returns a string that could be used as a display value for the employee
(Chapter 6 offers such an example), as shown here:

function f_emp_dsp (i_empNo NUMBER)
return VARCHAR2 is

v_out_tx VARCHAR2 (256);
begin

select initcap(eName)||’: ‘||initcap(job)
into v_out_tx
from emp
where empNo = i_empNo;

return v_out_tx;
exception

when no_data_found
then return null;

end;

Now you decide to create a loop that prints a list of all employees and their
managers, as shown here:

declare
cursor c_emp is
select empNo, mgr
from emp
order by mgr;

begin
for r_emp in c_emp loop

DBMS_OUTPUT.put_line(f_emp_dsp(r_emp.mgr)
||’>’||f_emp_dsp(r_emp.empNo));

end loop;
end;

364 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 364

The function f_emp_dsp will be fired exactly 28 times (14 employees × 2).
But if you look at the output, a large number of values repeat. For example,
BLAKE is the manager for five people and is also managed by KING. This
means that the code will run exactly the same query six times. With a small
amount of data, running the query six times isn’t a big problem. But with
thousands of records, even though each execution takes a millisecond, the
time can add up quickly.

You can decrease that overhead in a number of ways. The idea is to cache the
calculated data in the local variables, as shown in Listing 15-7.

Listing 15-7: Caching Calculated Data

declare
cursor c_emp is
select empNo, mgr
from emp

order by mgr;
type list_aa is table of VARCHAR(2000)
index by binary_integer;

v_emp_aa list_aa;
begin
for r_emp in c_emp loop
if not v_emp_aa.exists(r_emp.empNo) then
v_emp_aa(r_emp.empNo):=f_emp_dsp(r_emp.empNo); ➞12

end if;
if not v_emp_aa.exists(nvl(r_emp.mgr,-1)) then
v_emp_aa(nvl(r_emp.mgr,-1)):=f_emp_dsp(r_emp.mgr);

➞15
end if;

DBMS_OUTPUT.put_line
(v_emp_aa(nvl(r_emp.mgr,- 1)) ||’>’

||v_emp_aa(r_emp.empNo));
end loop;

end;

Here’s more information about Listing 15-7:

➞12 In this case, you can use an associative array indexed by BINARY_
INTEGER. Because you have a uniquely identified EMPNO, you can
first check the array for appropriate records and call the proce-
dure only if an entry for that employee does not yet exist in the
array.

➞15 The NVL (checking whether the value is null) on MGR is needed
because KING has no managers and an associative array can’t
have NULL as an index. As a result, the total number of executions
of the function f_empDsp dropped from 28 to 15 (14 records plus
NULL).

365Chapter 15: Ten PL/SQL Tips

24_599577 ch15.qxp 5/1/06 12:18 PM Page 365

The same logic of reducing the number of executions is true not only for
user-defined functions and procedures, but for built-in ones. Even executing
SYSDATE several hundred thousand times could cause some problems. If you
need to move a few million records from a production table to an archive, use
the following logic:

declare
v_sysdate DATE;

begin
v_sysdate := sysdate;
insert into back_emp (empNo, eName, ..., archive_dt)
select empNo, eName, ..., v_sysdate
from prod_emp;

end;

A function in an SQL statement will execute at least once for every row
returned. However, sometimes in SQL queries that join multiple tables, the
function might execute so many times that the query never returns. You have
to look closely at the execution plan of the query to see how many times the
function will execute.

Beware of Implicit Commits
As we discuss in Chapter 12, any DDL command causes an implicit commit.
This isn’t a major issue because you won’t usually have DDL commands in
your code. But every experienced developer has encountered situations simi-
lar to the following when building a system: Imagine that you insert or delete
a bunch of data, and then you recompile your procedure and your changes
are instantly committed. The problem is that you might not need to commit
(for example, you just discovered a bug in your code). Always think about
any uncommitted changes whenever performing DDL operations.

The TRUCNATE TABLE command is also DDL and forces an explicit commit,
as well.

Each time you work with the data and the code simultaneously, try to do only
one thing at a time. Make a habit of always using an explicit commit or roll-
back before you start modifying your code.

The same problem of unintentional commits could happen if you’re using
Dynamic SQL to build DDL statements on the fly, as shown here in a routine
that creates a backup of the EMP table:

366 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 366

create or replace procedure p_backupEmp is
v_name_tx VARCHAR2(30);

begin
v_name_tx:=’emp’||TO_CHAR(sysdate,’YYYYMMDDHH24MISS’);
execute immediate ‘create table ‘||v_name_tx||

‘ as select * from emp’;
end;

Now you want to include that procedure in the backup routine, assuming that
the EMP table has a column to store the date of the last backup. The code to
do this is shown in Listing 15-8.

Listing 15-8: Backup Routine Procedure

procedure p_backupMain is
begin

update emp ➞3
set backup_dt = sysdate; ➞4

p_backupEmp;
exception
when others then
rollback;
raise_application_error

(-20999,’Backup Failed with error: ‘||sqlerrm);
end p_backupMain;

➞3–4 At first glance, the code looks fine. But what if you forgot to check
whether the hard drive had enough space and the CREATE TABLE
failed? Even a failed DDL command issues a commit. As a result
this command updates the EMP table even though the backup
wasn’t completed.

This problem has a number of solutions. The simplest is to modify the code
so that, at the moment of DDL execution, there is no uncommitted data that
would be rolled back in case of a fatal error. In Listing 15-8, simply swapping
the order of the UPDATE and p_backupEmp commands would work.

How can you guarantee that the procedure p_backupEmp won’t be called
from another routine that might involve some data changes? In large systems,
you might have a tough time searching through ten levels of function calls to
figure out what caused an implicit commit.

An alternative and more efficient solution involves using autonomous trans-
actions, as shown in Listing 15-9.

367Chapter 15: Ten PL/SQL Tips

24_599577 ch15.qxp 5/1/06 12:18 PM Page 367

Listing 15-9: Using Autonomous Transactions with DDL Commits

create or replace procedure p_backupEmp is
v_name_tx VARCHAR2(30);
pragma autonomous_transaction; ➞3

begin
v_name_tx:=’emp’||TO_CHAR(sysdate,’YYYYMMDDHH24MISS’);
execute immediate ‘create table ‘||v_name_tx||

‘ as select * from emp’;
end p_backupEmp;

➞3 Declares that the procedure p_backupEmp should be executed in
a different transaction from the parent one.

Now the implicit commit caused by the CREATE TABLE command doesn’t
have any impact on the uncommitted data changes in the parent routine.
As a result, it is safe to call p_backupEmp in any part of the code.

Autonomous transactions don’t see uncommitted parent changes (see
Chapter 12 for more details). In Listing 15-9, the backup will use the old
values of backup_dt. In this particular case, that limited visibility is irrele-
vant because you have a precise timestamp in the name of the table.
However, in some cases, this issue may be critical.

There is another “cheat” with using autonomous transactions that can help
resolve restrictions on what functions you can use in SQL. Using the Chapter
6 example of giving employees a raise, you could write the following code:

function f_giveRaise_tx (i_empNo NUMBER, i_pcnt NUMBER)
return VARCHAR2 is

begin
update emp
set sal=sal*(i_pcnt/100)+sal
where empNo = i_empNo;

return ‘OK’;
exception

when others then
return ‘Error:’||substr(sqlerrm,1,256);

end f_giveRaise_tx;

Calling the function in SQL (select f_giveRaise_tx from dual) raised
an ORA-14551 error, but you can define the function as an autonomous
transaction, as shown here:

function f_giveRaise_tx (i_empNo NUMBER, i_pcnt NUMBER)
return VARCHAR2 is

pragma autonomous_transaction;
begin

update emp
set sal=sal*(i_pcnt/100)+sal

368 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 368

where empNo = i_empNo;
commit;
return ‘OK’;

exception
when others then

rollback;
return ‘Error:’||substr(sqlerrm,1,256);

end f_giveRaise_tx;

Now you can use that function whenever you want.

You have to either commit or roll back your changes before the return
(whether the return is successful or not) from the function or procedure
declared as an autonomous transaction to ensure that your function can
be used appropriately.

Use Only One RETURN
Statement per Function

Keeping function returns to a minimum is important. One very useful tech-
nique is to use a single OUT point in the routine. This means that

� Functions have only one RETURN statement.

� The RETURN statement should be the last line before the exception
block.

By sticking to both of these rules, you can clearly see when a function
expects to return a value. As an example, you might write the function
f_empDsp to include multiple display types, as shown in Listing 15-10.

Listing 15-10: Limiting Function Returns

function f_emp_dsp (i_empNo NUMBER,
i_type_tx VARCHAR2:=’DEFAULT’,
i_limit30char_yn VARCHAR2:=’N’)

return VARCHAR2 is
v_out_tx VARCHAR2 (256);

begin
if i_empNo is null then

v_out_tx:=null;
elsif i_type_tx=’NO_ID’ then

select eName into v_out_tx
from emp
where empNo = i_empNo;

(continued)

369Chapter 15: Ten PL/SQL Tips

24_599577 ch15.qxp 5/1/06 12:18 PM Page 369

Listing 15-10 (continued)

elsif i_type_tx = ‘JOB’ then
select eName||’: ‘||job into v_out_tx
from emp
where empNo = i_empNo;

else
select empNo||’ ‘||eName into v_out_tx
from emp
where empNo = i_empNo;

end if;
if i_limit30char_yn = ‘Y’ then

v_out_tx:=substr(v_out_tx,1,29)||’>’;
end if;
return v_out_tx; ➞25

exception
when no_data_found then

v_out_tx:= ‘<Error>’;
return v_out_tx; ➞29

end;

➞25–29 The idea is that you have only one variable to monitor (V_OUT_TX)
and that variable will be returned to the calling routine in only one
place in the body of the function and one place in the exception
handler.

Save Debugging Time
with WHEN OTHERS

Most programmers know better than to use WHEN OTHERS THEN NULL
in their code because it hides errors and makes the code harder to debug.
However, using the exception WHEN OTHERS can save you a lot of debugging
time because it captures unpredictable events.

Many things can go wrong in your code, but explicitly placing exception han-
dlers to cover all situations is impossible. On the other hand, debugging an
exception raised somewhere deep in a chain of function calls is also difficult.

The exception WHEN OTHERS allows you to intercept these unspecified
exceptions. But the question is: what do you do with them? One option is to
return an error message (as shown in the function f_giveRaise_tx exam-
ple in Listing 15-11). Although developers need to know what is going on in
the system, it isn’t possible to return an error to the end user in all cases.

370 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 370

There is a good debugging method involving a custom routine p_log (for
more information, see Chapter 14), as shown here:

create sequence log_seq
/
create table log_info (id_nr NUMBER,

message_tx VARCHAR2(4000),
timestamp_ts TIMESTAMP)

/
create or replace procedure p_log (i_message_tx VARCHAR2)
is
pragma autonomous_transaction;

begin
insert into log_info
(id_nr, message_tx, timestamp_ts)
values
(log_seq.nextval, i_message_tx, current_timestamp);
commit;

end p_log;
/

The procedure p_log is declared as an autonomous transaction and saves
any message that you want to pass to the database without interrupting any
other transactions.

Using this procedure, you can store an exception message, as shown in
Listing 15-11.

Listing 15-11: Storing an Exception Message

function f_giveRaise_tx (i_empNo NUMBER, i_pcnt NUMBER)
return VARCHAR2 is

pragma autonomous_transaction;
begin

update emp
set sal=sal*(i_pcnt/100)+sal
where empNo = i_empNo;

commit;
return ‘OK’;

exception
when others then

rollback;
p_log(‘f_giveRaise_tx-ERROR:’||sqlerrm);
return ‘<Contact help desk>’;

end f_giveRaise_tx;

Now the end user sees a much friendlier error message, and you have real
information about the problem in the database.

371Chapter 15: Ten PL/SQL Tips

24_599577 ch15.qxp 5/1/06 12:18 PM Page 371

If you don’t want to intercept the error, you can always re-raise an exception
in the exception block, as shown here:

exception
when others then

rollback;
p_log(‘f_giveRaise-ERROR:’||sqlerrm);
raise;

end f_giveRaise_tx;

Using this approach, the routine raises the same error that it would raise
without exception handling, but now you have a log record indicating the
existence of an error. This log can be very useful in debugging.

Know When to Pass Parameters
or Use Global Variables

In a stateless, Web-based environment, cursors, functions, and procedures
sometimes are unable to reference values outside of themselves. Instead,
they should pass parameters.

Although global variables might appear very convenient, there is a good
reason for passing parameters into the routines instead of keeping global
values. In an environment with stateless Web applications, you can’t be sure
of getting the same session each time you request the data.

The following code shows an example of code formatted for a client/server
environment, where packaged variables can be used as session-level global
variables. (You can read more about using packages and packaged variables
in Chapter 7.)

create or replace package pkg_emp is
v_current_empNo NUMBER;
procedure p_setEmpno (i_empNo NUMBER);
function f_getEmpno return NUMBER;
--
procedure p_giveRaise (i_pcnt NUMBER);

END;
/
create or replace package body pkg_emp IS

gv_current_empNo NUMBER;

procedure p_setEmpno (i_empNo NUMBER) is
begin

gv_current_empNo:=i_empNo;

372 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 372

end p_setEmpno;

function f_getEmpNo return NUMBER is
begin

return gv_current_empNo;
end f_getEmpNo;

procedure p_giveRaise (i_pcnt NUMBER) is
begin

update emp
set sal=sal*(i_pcnt/100)+sal
where empNo = f_getEmpNo;

end p_giveRaise;
end;
/

This code works perfectly in client/server mode with special APIs to set/
get the value of the employee you’re working with. These APIs can be refer-
enced whenever you need them (in this case, to give a raise to the selected
employee).

But in a Web-based environment, you can’t always guarantee that your
second request will go to the same session. This means that, instead of
keeping global variables in the session, the global variables become proper-
ties of the client. (Some Web developers store them as cookies in browsers.)
Therefore, you need to pass all parameters explicitly, as shown here:

procedure p_giveRaise (i_pcnt NUMBER, i_empNo NUMBER) is
begin

update emp
set sal=sal*(i_pcnt/100)+sal
where empNo = i_empNo;

end p_giveRaise;

Before writing any APIs to support front-end developers, you need to under-
stand the environment in which they’re working. If you can’t guarantee that
subsequent calls will be in the same session, you need to make sure that all
necessary variable values are passed on each call to the program unit.

Use Implicit Cursors When Appropriate
Implicit cursors are marginally faster than explicit cursors for single record
fetches. But, the main reason to use them is that they make code easier to
read. Instead of having a cursor in the declaration section of your code that is
referenced in the body of the code (as with an explicit cursor), the cursor is
defined right where it is executed.

373Chapter 15: Ten PL/SQL Tips

24_599577 ch15.qxp 5/1/06 12:18 PM Page 373

Because there is now no good reason to use explicit cursors whenever you
need to get a single record, use implicit cursors instead. The difference
between the two is shown in Listing 15-12.

Listing 15-12: The Difference between Explicit and Implicit Cursors

-- Explicit cursor
function f_empExp_dsp (i_empNo NUMBER)
return VARCHAR2 is

v_out_tx VARCHAR2(2000);
cursor c_emp (ci_empNo NUMBER) is
select empNo||’ ‘||eName||’ (‘||job||’)’ emp_dsp
from emp
where empNo=ci_empNo;

v_emp_rec c_emp%ROWTYPE;
begin

open c_emp(i_empNo);
fetch c_emp into v_emp_rec;
close c_emp;
return v_emp_rec.emp_dsp;

exception
when others then

if c_emp%ISOPEN then
close c_emp;

end if;
return null;

end f_empExp_dsp;

-- Implicit cursor
function f_empImp_dsp(i_empNo NUMBER)
return VARCHAR2 is

v_out_tx VARCHAR2(2000);
begin

select empNo||’ ‘||eName||’ (‘||job||’)’ into v_out_tx
from emp
where empNo=in_empNo;
return v_out_tx;

exception
when no_data_found then

return null;
when too_many_rows then

return ‘<Error>’;
end f_empImp_dsp;

The implicit code is cleaner, but keep the following issues in mind:

� You can’t simply replace explicit cursors with implicit ones. Explicit cur-
sors don’t raise the exceptions NO_DATA_FOUND (only the first fetch is
null) and TOO_MANY_ROWS. (If developers didn’t bother to fetch a second
row in the cursor, this doesn’t mean that there is no second row.

374 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 374

� To store a fetched value, you can reference an explicit cursor with
%ROWTYPE, but with an implicit one you have to think about the appro-
priate variables into which to fetch the data.

Remember That Dates Are Numbers
Internally in Oracle, dates are really numbers, so you can perform numeric
operations against dates.

Oracle 9i and 10g have new datatypes to store dates: TIMESTAMP and INTER-
VAL (for more details, see Chapter 10). But good old dates are still very useful
when you don’t need to know the time zone or granularity below the time
unit of a second. Internally, dates are stored as numbers, so you can do what-
ever you want with them. A common set of date tasks can be resolved if you
think about dates as numbers.

For example, to find the difference between two dates down to the second,
use Listing 15-13.

Listing 15-13: Finding the Difference between Dates

function f_secBetween_nr (i_date1_dt DATE,i_date2_dt DATE)
return NUMBER is

v_ret_nr NUMBER;
begin

v_ret_nr:=i_date1_dt-i_date2_dt; ➞5
return v_ret_nr*(24*60*60); ➞6

end f_secBetween_nr;

Here’s what Listing 15-13 does:

➞5 The default level of date rounding is a day, so this line finds the
difference in days.

➞6 This line converts days into seconds. (24 hours in a day, 60 min-
utes in an hour, 60 seconds in a minute)

Now you have the difference in seconds, but you want to have something
more understandable to end users, so use the code shown here:

function f_getTime_tx (i_diff_nr NUMBER)return VARCHAR2 is
v_out_tx VARCHAR2(2000);

v_hr_nr NUMBER;
v_min_nr NUMBER;
v_sec_nr NUMBER;

375Chapter 15: Ten PL/SQL Tips

24_599577 ch15.qxp 5/1/06 12:18 PM Page 375

begin
v_hr_nr:=trunc(i_diff_nr/(60*60));
v_min_nr:= trunc((i_diff_nr-v_hr_nr*60*60)/60);
v_sec_nr:=mod(i_diff_nr,60);

v_out_tx:=v_hr_nr||’ hours ‘||
v_min_nr||’ min ‘||v_sec_nr||’ sec’;

return v_out_tx;
end f_getTime_tx;

It isn’t difficult to get hours, minutes, and seconds from the difference.

Another common task is returning a point just before a specific midnight, as
shown here:

function f_getMidnight_dt (i_date_dt DATE) return date is
begin

return trunc(i_date_dt)+1-1/(24*60*60);
end;

In this case, you first truncate a passed date, add one full day, and subtract
one second.

376 Part VI: The Part of Tens

24_599577 ch15.qxp 5/1/06 12:18 PM Page 376

Chapter 16

Ten Common Mistakes
to Avoid in PL/SQL

In This Chapter
� Recognizing bad exception handling

� Controlling conditions, cursors, and loops

� Reusing code effectively

� Writing code that’s easy to read and maintain

No matter how hard programmers try to make their code error free,
they’re still human, and every system includes code that contains

mistakes. In addition to simple mistakes in coding, some global mistakes are
common among inexperienced programmers. To help you recognize these
problems and get up to speed with PL/SQL more easily, this chapter describes
ten of the most important mistakes to avoid when writing PL/SQL.

Catching an Exception with WHEN
OTHERS THEN NULL

Never catch an unidentified exception without logging information about it.
Chapter 15 mentions that the exception handler WHEN OTHERS is extremely
useful, but it can also be the source of the most dangerous line of code that
can exist in PL/SQL, as shown here:

begin
...

exception
when others then
null;

end;

25_599577 ch16.qxp 5/1/06 12:18 PM Page 377

Unless you’re in the debugging or development mode, never use an exception
handler like this, especially in production instances of a system.

All exception handlers that have WHEN OTHERS without additional activity
(you might need to have that exception) should look like this:

function f_assignManager_tx (i_empNo NUMBER, i_mgr NUMBER)
return VARCHAR2
is

v_job_tx VARCHAR2(10);
begin
-- Update employee

update emp
set mgr=i_mgr
where empNo=i_empNo
returning job into v_job_tx;

-- If person is managing analysis - there will be no
-- commissions. Give 5% raise per person to the manager

if v_job_tx = ‘ANALYST’ then
update emp
set sal=sal*1.05
where empNo=i_mgr;

end if;
return ‘OK’;

exception
when others then

p_log(‘f_assignManager_tx(‘||i_empNo||’,’||i_mgr||
‘) ERROR:’||sqlerrm);

return ‘ERROR’;
end;

Here, you aren’t raising an exception if something goes wrong, but instead,
returning ERROR rather than OK and logging a real error (see the P_LOG
procedure in Chapter 15). You can use this logic if, because of front-end
restrictions, you can’t throw Oracle exceptions (for example, in a Web-based
environment). This technique is a cleaner way of notifying the front end that
something has gone wrong without destroying performance, and it also pro-
vides useful debugging information.

This exception handler includes a call to the logging routine, to which you
are passing the current function name, its parameters, and the SQL error
message. This is the minimum information that should be logged, but you
could add the current user, the client’s IP address, global parameter settings,
and other data.

Don’t hesitate to add a lot of information to debugging messages. When
you’re trying to identify and solve a problem, you never know what data you
might need. These debugging statements shouldn’t be executed at all, but
even if they are executed, the performance impact is negligible.

378 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 378

Forgetting to Handle NULL Values
Operating on variables or columns that might contain NULL values without
explicitly handling these NULL values can cause problems and produce
strange results. That’s because NULL is handled differently from other values.
As mentioned in Chapter 3, you should keep the following rules in mind:

1. All logical operations (including NOT) that involve NULL values always
return FALSE.

2. All operations (built-in functions, arithmetic) with NULL return NULL,
with the following exceptions:

• Concatenations of strings ignore NULL.

• DECODE can compare values with NULL.

• REPLACE can take NULL as a third parameter.

As an example, if you need to create a trigger to enforce a number of rules
related to the salaries and commissions of employees, you might write:

create or replace trigger emp_biu
before insert or update on emp
referencing new as new old as old
for each row
begin

if :new.sal+:new.comm >= 10000 then
raise_application_error (-20999,’Salary with

commissions should be less than 10000’);
end if;

end;

Now when you try to run a basic update, you get the following result:

SQL> update emp
2 set sal=15000
3 where eName=’KING’;

1 row updated.
SQL>

The trigger didn’t work, and it might take you hours to debug. The real prob-
lem is that this trigger is correct only when neither SAL nor COMM have NULL
values. Because the commission value is NULL for KING and SAL+COMM is
NULL (Rule #2 from earlier), you’re trying to compare NULL with 10000. But
any comparison of NULL always returns NULL (Rule #1). Therefore, the IF
statements don’t catch the problem.

379Chapter 16: Ten Common Mistakes to Avoid in PL/SQL

25_599577 ch16.qxp 5/1/06 12:18 PM Page 379

The trigger should look like this:

create or replace trigger emp_biu
before insert or update on emp
referencing new as new old as old
for each row
begin

if nvl(:new.sal,0)+nvl(:new.comm,0) >= 10000 then
raise_application_error (-20999,’Salary with

commissions should be less than 10000’);
end if;

end;

Using this code, all cases are covered. By applying NVL to the columns, you
can be certain that an operation won’t result in a NULL value.

In grouping functions (SUM, AVG, COUNT), you also need to watch out for
NULL values. The rule is that these functions process only not-NULL values;
but if all values are NULL, the result is also NULL, as shown here:

SQL> select deptNo, sum(comm), sum(sal),
sum(comm)+sum(sal)

2 from emp
3 group by deptNo;

DEPTNO SUM(COMM) SUM(SAL) SUM(COMM)+SUM(SAL)
---------- ---------- ---------- ------------------

10 12750
20 10875
30 2200 9400 11600

SQL>

Even employees from department 30 have some NULL values in the COMM
column, SUM(COMM), because department 30 is not NULL (Oracle adds up all
not-NULL values). But in departments 10 and 20, there are no employees with
not-NULL commissions. That’s why SUM(COMM) is NULL for these depart-
ments, and consequently, SUM(COMM)+SUM(SAL) is also NULL.

Creating Unintended Boolean Expressions
Be careful when building complex logical conditions. You need to group logi-
cal conditions appropriately so that others can maintain your code in the
future. Using the trigger from the previous example, add more complex rules:

Salary + commissions may not be greater than $10,000 if you work in
department 20, or if you are a clerk.

380 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 380

With complex conditions like this, you need to define each element:

1. Is the total of salary + commissions > $10,000?

2. Does the employee work in department 20?

3. Is the employee’s job title CLERK?

Now you need to group the rules. In this case, you have two groups for the
error condition: check salary (Rule #1 should be true) and check extra condi-
tions (either Rule #2 or Rule #3 should be true).

The last step is to convert a group into logical operations. Inside the second
group, you have an OR condition. Between groups, you have AND conditions,
as shown in Listing 16-1.

Listing 16-1: Grouping Conditions

create or replace trigger emp_biu
before insert or update on emp
referencing old as old new as new
for each row
begin

if nvl(:new.sal,0)+nvl(:new.comm,0) >= 10000
and (:new.deptNo=20 ➞7

or :new.job=’CLERK’) ➞8
then

raise_application_error (-20999,’Salary with
commissions should be less than 10000’);

end if;
end;

➞7–8 Note the parentheses around the two conditions connected with
OR. Because the first group contains only one condition, no extra
parentheses are necessary. This is the only correct way of coding.
Each group of conditions should be enclosed in parentheses.

But if you forgot the parentheses and wrote the code like this:

...
if nvl(:new.sal,0)+nvl(:new.comm,0) >= 10000
and :new.deptNo=20

or :new.job=’CLERK’
...

you will have an error each time you try to update the salary or commissions of
any employee with the job CLERK because the logical operator AND has a higher
precedence than OR (like multiplying rather than adding). As a result, the last
condition can be translated as: “The update will fail if salary + commissions for
a person working in department 20 are more than $10,000. The update will also
fail if the job title is ‘CLERK’.” This is definitely not what you wanted.

381Chapter 16: Ten Common Mistakes to Avoid in PL/SQL

25_599577 ch16.qxp 5/1/06 12:18 PM Page 381

You should use the same syntax rule of enclosing condition groups in paren-
theses, not only in PL/SQL but in SQL, too. Remembering this could save you
hours of debugging afterward. The following is an example of good syntax for
a situation when you need to retrieve all records from the EMP table with a
number of different rules:

select *
from emp
where (

(deptNo=30
and sal>1500)

or
(deptNo=20
and sal>1000)

)
and job!=’ANALYST’

Note how we applied parentheses to group each condition so that Oracle
knows exactly how those conditions should be interpreted.

Forgetting to Close an Explicit Cursor
Each time you use an explicit cursor, don’t forget to close it.

Using explicit cursors (which we introduce in Chapter 6) is good coding
practice. Remember that the database parameter OPEN_CURSORS defines the
maximum number of cursors that can be open at the same time. The value of
the variable might change from one environment to another, but the point is
that the number of cursors is limited. Forgotten cursors that are left open can
bring a system to a halt. Listing 16-2 shows a correctly written routine.

Listing 16-2: Correctly Written Explicit Cursors

create or replace function f_getList_tx
(i_source_tx VARCHAR2,
i_column_tx VARCHAR2,
i_filter_tx VARCHAR2,
i_separator_tx VARCHAR2)

return VARCHAR2
is

v_string_tx VARCHAR2(4000);
v_temp_tx VARCHAR2(4000);
v_out_tx VARCHAR2(4000);
v_weak_ref sys_refcursor;

begin
v_string_tx:=’select ‘||i_column_tx||

‘ from ‘||i_source_tx||
‘ where ‘||i_filter_tx;

382 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 382

open v_weak_ref for v_string_tx;
loop

fetch v_weak_ref into v_temp_tx;
exit when v_weak_ref%NOTFOUND;

if v_out_tx is null then
v_out_tx:=v_temp_tx;

else
v_out_tx:=v_out_tx||i_separator_tx||v_temp_tx;

end if;
end loop;

close v_weak_ref;
return v_out_tx;

exception
when others then

if v_weak_ref%isOpen then
close v_weak_ref;
raise;

end if;
end;

The problem was to generate a list of any columns from any table with a
specified condition and separator. As we discuss in Chapter 13, if you have an
undefined data source, you can always use dynamic SQL. But with dynamic
SQL, you have to use explicit cursors. If you stick to the following rules, you
should be able to use explicit cursors successfully:

� When you start typing a routine, immediately include both the OPEN and
CLOSE cursor statements.

� Never add a RETURN clause before closing the cursor.

� In the exception-handling block, always check to see whether explicit
cursors are open, and if so, close them.

If you’re using recursive calls to the same routine, be very careful about using
explicit cursors. In a structure with 20 levels of hierarchy, at some point, you’re
likely to have 20 cursors open simultaneously. If you have a large number of
users, this could cause your system to reach or exceed the maximum number
of cursors.

Oracle is fairly smart about closing cursors if you forget to do so. When a pro-
gram unit terminates, all cursors that it opened are automatically closed. But
relying on this capability is dangerous and can ultimately result in having too
many cursors open at once, so remember to close your cursors explicitly.

383Chapter 16: Ten Common Mistakes to Avoid in PL/SQL

25_599577 ch16.qxp 5/1/06 12:18 PM Page 383

Starting Endless Loops
Endless loops can cause endless problems. Common among those problems
is freezing your system. So each time you create a loop, you must think about
how the code will exit from the loop.

Listing 16-3 illustrates how easy it is to create loop-related problems, if you’re
not careful. This code creates a function that checks whether, in a given
department, the number of employees with an income less than the defined
amount is in fact limited to the number specified.

Listing 16-3: Endless Loop Example

function f_limit_yn(i_deptNo NUMBER,
i_limit_nr NUMBER, i_income_nr NUMBER)

return VARCHAR2
is

cursor c_emp is
select nvl(sal,0)+nvl(comm,0) income_nr
from emp
where deptNo=i_deptNo;

v_income_nr NUMBER;
v_counter_nr NUMBER:=0;
v_error_yn VARCHAR2(1):=’N’;

begin
open c_emp;
loop

fetch c_emp into v_income_nr;
if v_income_nr < i_income_nr then

v_counter_nr:=v_counter_nr+1;
end if;
if v_counter_nr=i_limit_nr then

v_error_yn:=’Y’;
exit;

end if;
end loop;
close c_emp;
return v_error_yn;

end;

You could write this function, test it a few times, and deploy it to production.
But if you select department 40 in the user interface, you’ll be stuck in a dead
loop. This is because you can exit from the loop only if the major condition is
satisfied. But what about the case when it isn’t satisfied, as is the case with
department 40, which has no employees? Listing 16-4 shows the correct way.

384 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 384

Listing 16-4: Correct Code to Exit a Loop

function f_limit_yn(i_deptNo NUMBER,
i_limit_nr NUMBER, i_income_nr NUMBER)

return VARCHAR2
is

cursor c_emp is
select nvl(sal,0)+nvl(comm,0) income_nr
from emp
where deptNo=i_deptNo;

v_income_nr NUMBER;
v_counter_nr NUMBER:=0;
v_error_yn VARCHAR2(1):=’N’;

begin
open c_emp;
loop

fetch c_emp into v_income_nr;
exit when c_emp%NOTFOUND; ➞17
if v_income_nr < i_income_nr then

v_counter_nr:=v_counter_nr+1;
end if;
if v_counter_nr=i_limit_nr then

v_error_yn:=’Y’;
exit; ➞23

end if;
end loop;
close c_emp;
return v_error_yn;

end;

➞17 Provides the exit from the loop if the department has no
employees.

Usually, developers focus on the major condition and forget that other
scenarios could cause problems.

The best way to avoid endless loops is to use CURSOR FOR loops or FOR
loops whenever possible. If you don’t need to interrupt processing, always
use a FOR loop. It’s much safer.

In some cases, you can replace regular loops with SQL. Listing 16-4 could be
rewritten, as shown in Listing 16-5.

Listing 16-5: A SQL Replacement for Regular Loops

function f_checkDeptLimit_yn (i_deptNo NUMBER,
i_limit_nr NUMBER, i_income_nr NUMBER)

return VARCHAR2

(continued)

385Chapter 16: Ten Common Mistakes to Avoid in PL/SQL

25_599577 ch16.qxp 5/1/06 12:18 PM Page 385

Listing 16-5 (continued)

is
v_counter_nr NUMBER:=0; ➞5
v_error_yn VARCHAR2(1):=’N’;

begin
select count(*)
into v_counter_nr
from emp
where deptNo = i_deptNo
and nvl(sal,0)+nvl(comm,0)<i_income_nr
and rownum < i_limit_nr+1 ;

if v_counter_nr=i_limit_nr then ➞15
v_error_yn:=’Y’;

end if;
return v_error_yn;

end;

➞5, 15 Limits number of counted rows with the passed limit.

As a result, the value of v_counter_nr could be less than or equal to the
limit. This solution, although elegant, is significantly less clear. Even though
you’re getting rid of loops, you’re increasing the complexity of the code. You
need to use your judgment about whether the added complexity is warranted.

Reinventing the Wheel
Don’t try to create code structures that have already been developed for you
by Oracle.

Before you start coding, it is a good idea to review an Oracle manual with the
list of built-in functions. This tip is especially true when working with strings.

For example, if you need to create a routine to check Social Security num-
bers, the specifications would be:

� A correct string is 11-characters long.

� A string should contain 9 numbers and 2 dashes.

Your first reaction might be to just start coding. You could write something
like Listing 16-6 in 20 minutes.

386 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 386

Listing 16-6: A Routine to Check Social Security Numbers

function f_validSSN_yn (i_ssn_tx VARCHAR2)
return VARCHAR2

is
v_ctr_nr NUMBER := 0;
v_ssnNr_tx VARCHAR2(256);
v_out_yn VARCHAR2(1);
v_error_yn VARCHAR2(1);

begin
if i_ssn_tx is null then

v_out_yn:=’Y’;
else

v_ssnNr_tx:=replace(i_ssn_tx,’-’,’’);
if length(v_ssnNr_tx)!=9 then

v_error_yn:=’Y’;
else

v_ctr_nr:=1;
loop

if instr (‘0123456789’,
substr (v_ssnNr_tx, v_ctr_nr, 1))= 0

then
v_error_yn:=’Y’;

end if;
exit when v_ctr_nr=9 or v_error_yn=’Y’;
v_ctr_nr:=v_ctr_nr+1;

end loop;
end if;

end if;

if v_error_yn=’Y’ then
v_out_yn:=’N’;

else
v_out_yn:=’Y’;

end if;

return v_out_yn;
end;

Listing 16-6 works exactly as you specified. But is it the best way to code?
Definitely not. You could code exactly the same functionality in a different
way, as shown in Listing 16-7.

Listing 16-7: A Better Routine to Check Social Security Numbers

function f_validSSN_yn (i_ssn_tx VARCHAR2) return VARCHAR2
is

v_out_tx VARCHAR2(1);

(continued)

387Chapter 16: Ten Common Mistakes to Avoid in PL/SQL

25_599577 ch16.qxp 5/1/06 12:18 PM Page 387

Listing 16-7 (continued)

v_temp_string_tx VARCHAR2(256);

begin
if i_ssn_tx is null then

v_out_tx:=’Y’;
elsif length(i_ssn_tx)!=11 then

v_out_tx:=’N’;
else

v_temp_string_tx:=
translate(i_ssn_tx,’?-0123456789’,’?’); ➞13

if v_temp_string_tx is not null
then

v_out_tx:=’N’;
else

if length(replace(i_ssn_tx,’-’))=9 then
v_out_tx:=’Y’;

else
v_out_tx:=’N’;

end if;
end if;

end if;

return v_out_tx;
end;

➞13 Instead of manually looping through the string character by char-
acter, this code uses the TRANSLATE function to extract from the
passed string all characters that are not in the valid list.

Note that you need to add a character before the list because you cannot
pass NULL in TRANSLATE as a third parameter. Now the code is significantly
simpler and more understandable. Also, because you don’t have a loop, as in
Listing 16-6, you avoid the danger of creating an infinite loop.

There is one more reason to use built-in functions. Oracle has tuned them to
improve performance speed. Using the Social Security number example, the
length of the possible input parameter is fairly small, so there isn’t much dif-
ference in performance. But if you need to parse very large strings or even
CLOBs, built-in functions can significantly improve performance.

Converting Datatypes Implicitly
Although Oracle sometimes can implicitly convert one datatype to another,
that doesn’t mean you should trust implicit conversions of datatypes —
especially dates. In fact, this isn’t a good idea at all.

388 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 388

As an example, if you need to build a function that converts a past year,
month, and day into a DATE value, you could write code as in Listing 16-8.

Listing 16-8: Cross Datatype (Unstable Example)

function f_getDate_dt
(i_day_nr NUMBER, i_month_tx VARCHAR2, i_year_nr NUMBER)

return date is
v_out_dt DATE;

begin
v_out_dt:= i_day_nr||’-’||i_month_tx||’-’||i_year_nr;
return v_out_dt;

exception
when others then
return null;

end;

You can use this code only because you know that the default date format
is DD-MON-YYYY, so you have one less TO_DATE call. But the potential side
effect is worse, because changing the default date format or moving the code
to a different database will destroy the function. Because your code shouldn’t
be that fragile, you should use something like Listing 16-9.

Listing 16-9: Cross Datatype (Stable Example)

function f_getDate_dt
(i_day_nr NUMBER, i_month_tx VARCHAR2, i_year_nr NUMBER)
return date is

v_out_dt DATE;
begin

v_out_dt:=
to_date(i_day_nr||’-’||i_month_tx||’-’||i_year_nr,

‘DD-MON-YYYY’); ➞8
return v_out_dt;

exception
when others then
return null;

end;

➞8 This line means that the code is not dependent on any database
parameters to run correctly.

Another common problem with implicit conversion occurs when working
with numeric values that aren’t exactly numeric. As an example, Listing 16-10
formats an address.

389Chapter 16: Ten Common Mistakes to Avoid in PL/SQL

25_599577 ch16.qxp 5/1/06 12:18 PM Page 389

Listing 16-10: Incorrect Code to Format an Address

function f_formatAddress_tx
(i_street_tx VARCHAR2, i_city_tx VARCHAR2,
i_state_tx VARCHAR2, i_zip_nr NUMBER) ➞3
return VARCHAR2 is

v_out_tx VARCHAR2(2000);
begin

v_out_tx:=i_street_tx||chr(10)||i_city_tx||
‘, ‘||i_state_tx||’ ‘||i_zip_nr;

return v_out_tx;
end;

SQL> select f_formatAddress_tx(‘701 Amboy Ave.’,
2 ‘Woodbridge’, ‘NJ’, ‘07095’) Address from dual;

Address
--
701 Amboy Ave.
Woodbridge, NJ 7095
SQL>

➞3 If you run this code, the ZIP code loses the first digit, because you
declared the input variable I_ZIP_NR as NUMBER. Even though
you passed the ZIP code in quotes, it was dynamically converted
into a number, which automatically dropped the leading zero.

These errors are detected only at runtime and only under certain circumstances
(ZIP codes that start with zero), which is what makes them so dangerous.
Although Oracle allows you to be a bit sloppy, finding these types of problems
later on could take you hours. The correct code is shown in Listing 16-11.

Listing 16-11: Correct Code to Format an Address

function f_formatAddress_tx
(i_street_tx VARCHAR2, i_city_tx VARCHAR2,
i_state_tx VARCHAR2, i_zip_tx VARCHAR2) ➞3
return VARCHAR2 is

v_out_tx VARCHAR2(2000);
begin

v_out_tx:=i_street_tx||chr(10)||i_city_tx||
‘, ‘||i_state_tx||’ ‘||i_zip_tx;

return v_out_tx;
end;

➞3 The ZIP code is passed as text. Under these conditions, you can
be sure that there won’t be any more surprises.

Not everything that looks like a numeric value is a numeric value. Oracle
cannot differentiate these cases. You must define the appropriate datatypes.

390 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 390

Cutting and Pasting Code
Sooner or later, all developers are tempted to copy and paste an existing
piece of code, modify it a bit, and be done with it. But a quick shortcut during
development can cost more time and effort than you might think down the
road. For example, you might have a function that prints a list of employees
for a specified department, as shown here:

procedure p_printEmp (i_deptNo NUMBER) is
cursor c_emp (ci_deptNo NUMBER) is
select empNo, eName, sal
from emp
where deptNo=ci_deptNo
order by empNo;

begin
for r_emp in c_emp (i_deptNo) loop

DBMS_OUTPUT.put_line(r_emp.empNo||
‘ ‘||r_emp.eName||’ – ‘||r_emp.sal);

end loop;
end;

Now you need to write a routine that will produce the same printout for any
two departments. Your first inclination might be to write something like this:

procedure p_printEmp (i_deptNo1 NUMBER, i_deptNo2 NUMBER)
is

cursor c_emp (ci_deptNo NUMBER) is
select empNo, eName, sal
from emp
where deptNo=ci_deptNo
order by empNo;

begin
for r_emp in c_emp (i_deptNo1) loop

DBMS_OUTPUT.put_line(r_emp.empNo||
‘ ‘||r_emp.eName||’ – ‘||r_emp.sal);

end loop;

for r_emp in c_emp (i_deptNo2) loop
DBMS_OUTPUT.put_line(r_emp.empNo||

‘ ‘||r_emp.eName||’ – ‘||r_emp.sal);
end loop;

end;

Using this structure, how many places will you have to check if you need to
modify the way in which the data is displayed? There will definitely be more
than one. Can you guarantee that you’ll find all these places? The code shown
in Listing 16-12 has no repeated sections and is much better in this situation.

391Chapter 16: Ten Common Mistakes to Avoid in PL/SQL

25_599577 ch16.qxp 5/1/06 12:18 PM Page 391

Listing 16-12: Code with No Repeated Sections

procedure p_printEmp (i_deptNo1 NUMBER, i_deptNo2 NUMBER)
is

cursor c_emp (ci_deptNo NUMBER) is
select empNo, sal
from emp
where deptNo=ci_deptNo
order by empNo;

procedure p_intPrint (pi_deptNo NUMBER) is
begin

for r_emp in c_emp (pi_deptNo) loop
DBMS_OUTPUT.put_line(f_emp_dsp(r_emp.empNo)|| ➞12

‘ - ‘|| r_emp.sal);
end loop;

end;
begin

p_intPrint (i_deptNo1);
p_intPrint (i_deptNo2);

end;

➞12 Uses f_emp_dsp to display the employee. Each display value is a
query to the EMP table, but because it is directly accessed by the
primary key, the performance impact should be minor.

Copying and pasting code does have some advantages:

� You aren’t touching the existing code, just adding code.

� The code has already been checked and therefore doesn’t contain
syntax errors.

� You don’t need to retest the code that is dependent on the original code.

The drawbacks of cutting and pasting are:

� The same modification has to be replicated everywhere.

� The code becomes less readable and more spaghetti-like.

Ironically, the advantages are relevant only for developers, and the disadvan-
tages are relevant for those who maintain the system. Although time spent by
developers to create the code can be very expensive, the cost of ongoing
errors when maintaining the code is hundreds of times higher.

Although there is technically nothing wrong with cutting and pasting code, a
few development hours saved can mean hours of downtime for an entire
organization, so cut and paste at your own risk.

392 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 392

Ignoring Code Readability
You don’t want the next person who looks at your code to have to guess
about your naming conventions or program structure. Ongoing maintenance
can consume large portions of the total cost of building an information
system. That’s why your goal as a developer should be to think about the
long-term maintenance of the system when you’re writing code.

Listing 16-13 is an example of badly written code.

Listing 16-13: Badly Written Code

function f1 (i VARCHAR2) return VARCHAR2 is
a VARCHAR2(1); b VARCHAR2(256);
begin
if i is null then a:=’Y’;
elsif length(i)!=11 then a:=’N’;
else b:=translate(i,’?-0123456789’,’?’);
if b is not null then a:=’N’;
else
if length(replace(i,’-’))=9 then a:=’Y’;
else a:=’N’;
end if;end if;end if;
return a;
end;

Although you can piece together the meaning in Listing 16-13, the code is
very badly structured and difficult to read. It requires some effort to figure
out where the procedure begins, not to mention trying to understand what
the three END IF statements are doing at the end. Listing 16-14 accomplishes
the same result. (See Chapter 9 for coding standard suggestions.)

Listing 16-14: Somewhat Improved Code

function f1 (i VARCHAR2) return VARCHAR2
is

a VARCHAR2(1);
b VARCHAR2(256);

begin
if i is null
then

a:=’Y’;
elsif length(i)!=11
then

a:=’N’;
else

b:=

(continued)

393Chapter 16: Ten Common Mistakes to Avoid in PL/SQL

25_599577 ch16.qxp 5/1/06 12:18 PM Page 393

Listing 16-14 (continued)

translate(i,’?-0123456789’,’?’);
if b is not null
then

a:=’N’;
else

if length(replace(i,’-’))=9
then

a:=’Y’;
else

a:=’N’;
end if;

end if;
end if;

return a;
end;

Listing 16-14 is a big improvement. Using appropriate indentation and line
separation makes it much easier to understand the logical structure of the
code. But the question of what each function does remains. Names like a, b,
i, and f1 don’t tell you anything at all.

It makes sense to call a function that is used for displaying records from the
EMP table so that you don’t have to look inside the function to figure out what
it’s doing. In this case, the name F_EMP_DSP is perfect. If a variable is used to
store a numeric counter, why not name it V_COUNTER_NR? To find out more
about naming objects and variables, see Chapter 8.

Listing 16-15 applies these naming standards to the code from Listing 16-14.

Listing 16-15: Well-Written Code

function f_validSSN_yn (i_ssn_tx VARCHAR2) return VARCHAR2
is

v_out_tx VARCHAR2(1);
v_temp_string_tx VARCHAR2(256);

begin
if i_ssn_tx is null
then

v_out_tx:=’Y’;
elsif length(i_ssn_tx)!=11
then

v_out_tx:=’N’;
else

v_temp_string_tx:=
translate(i_ssn_tx,’?-0123456789’,’?’);

if v_temp_string_tx is not null
then

v_out_tx:=’N’;

394 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 394

else
if length(replace(i_ssn_tx,’-’))=9
then

v_out_tx:=’Y’;
else

v_out_tx:=’N’;
end if;

end if;
end if;
return v_out_tx;

end;

This code accomplishes the same thing as Listing 16-7. Although both exam-
ples work exactly the same way and both have correct syntax, this one is
much easier to read and maintain.

Assuming Code Doesn’t Need Comments
There is no such thing as self-documenting code. The mistake of thinking that
working code is perfectly self-documenting has caused thousands of lost hours
in organizations all over the world. Even with the best naming and coding con-
ventions, you must still explicitly note many details. And you do that by adding
comments.

In the many systems that require complex code, the trick to adding useful
comments is to make sure that you (or someone else) will be able to under-
stand the code a few months (or even years) later. Writing code that enables
a system to be efficiently maintained is a critical part of building successful
information systems. Using the example of finding the number of employees
in a department with incomes less than a certain amount, Listing 16-16
demonstrates best practices for commenting.

Listing 16-16: Correctly Commented Code

function f_checkDeptLimit_yn
(i_deptNo NUMBER, i_limit_nr NUMBER, i_income_nr NUMBER)
return VARCHAR2
is
-- Owner: MRosenblum
-- Purpose: check whether in department I_DEPTNO
-- there are more than I_LIMIT_NR employees
-- with an income less than I_INCOME_NR
-- Comments:
-- *COMM or SAL could be NULL - NVL is used
-- *ROWNUM is applied after WHERE clause - counter is

(continued)

395Chapter 16: Ten Common Mistakes to Avoid in PL/SQL

25_599577 ch16.qxp 5/1/06 12:18 PM Page 395

Listing 16-16 (continued)

-- always less than or equal to limit. If there is more
-- valid records than limit it will still return a limit
----WHO--------WHEN----------WHAT----------------
-- MRosenblum 11-30-05 created original version

v_counter_nr NUMBER:=0;
v_error_yn VARCHAR2(1):=’N’;

begin
-- Get number of employees that satisfy condition
select count(*)
into v_counter_nr
from emp
where deptNo = i_deptNo
and nvl(sal,0)+nvl(comm,0)<i_income_nr
and rownum < i_limit_nr+1 ; -- limit fetch

-- Check for error
if v_counter_nr=i_limit_nr
then

v_error_yn:=’Y’;
end if;
return v_error_yn;

end;

Anyone can read this code, because you included a number of special
elements:

� A header that includes the following:

• Basic information (ownership and functionality)

• Functional comments that explain the implemented solution and
possible issues with the code

• A change log to keep track of all changes to the routine

� Inline comments, which separate different parts of the code and explain
specific code lines

Don’t over comment your code — a comment on every line isn’t necessary.
Use your judgment and plan an external code review to determine how much
commenting your routines require. See Chapter 9 for more specifics on
adding comments.

396 Part VI: The Part of Tens

25_599577 ch16.qxp 5/1/06 12:18 PM Page 396

• Symbols and
Numerics •

* (asterisk), 159
-- (double dash), 46, 207
/ (forward slash), 35
%FOUND variable, 144, 145, 146, 148, 156
%ISOPEN variable, 144, 146, 148, 156
<< >> (labeling blocks), 43
/* */ (multi-line comment), 46
%NOTFOUND variable, 144, 146, 148, 156
1NF (First Normal Form), 14
%ROWCOUNT cursor variable, 144, 146,

155, 156
%ROWTYPE declaration, 131–132, 143–144,

333–334
2NF (Second Normal Form), 14–15
; (semicolon), 35
‘ (single quote), 50–51
3NF (Third Normal Form), 15–16
%TYPE command, 212
_ (underscore), 191

• A •
abbreviations, 190, 199
access to package, controlling, 172–173
accessing

object table, 271
same object repeatedly, 347
status of cursor, 144–148

account
unlocking or locking, 33
user, connecting to database and, 31–32

activity audit, 308–309
actual parameter, 63
Ada programming language, 1, 18
ADD_MONTHS function, 239–240
AFTER EVENT trigger, 176–177

Agile approach
development teams and, 349–350
pair programming and, 350
rapid delivery and, 350–351
test-first approach and, 351

algorithm
evaluating, 339
refactoring, 347

alias for column, 216
anonymous block

defining cursor in, 139
description of, 34–36, 42
naming, 56–57
nesting, 43

API (Application Programming Interface),
68, 373

Application Development Framework -
Business Components (Oracle), 169,
182

application development software, 17
application server

placing code in, 183–185
setting up Oracle environment and, 24
software, setting up Oracle environment

and, 24
architecture, system

checking while writing code, 339–340
understanding, 336–337, 340

architecture, testing, 345
array

associative, 198, 280–283
variable size (VARRAY), 197, 198, 272–275

ASCII function, 244–245
assertion, 344
assigning

code to user-defined exception, 115–116
value in record, 262–265
value to variable, 48–49

associative array, 198, 280–283
asterisk (*), 159

Index

26_599577 bindex.qxp 5/1/06 12:18 PM Page 397

attribute
definition of, 13
dependency of, 14, 15
of exception, 106
of object, 267

auditing with autonomous transaction,
300–302, 308–310

autonomous transaction
activity audit and, 308–309
auditing, security, and, 300–302
data changes and, 303–305
description of, 291, 298
exceptions and, 307–308
functions and, 368–369
locks and, 306–307
nested transaction compared to, 302–303
query audit and, 309–310
self-mutating problems, 310–312
syntax for, 299–300
using with DDL commits, 368

avoiding conflicts of variable scope, 51–52

• B •
batch routine

database server and, 24
description of, 21
INSTEAD OF trigger view and, 181

BEFORE EVENT trigger, 176
BEGIN statement, 208, 210
Beginning Database Design (Powell), 16
best practices

Agile approach and, 349–351
coding, 336–338
importance of, 335–336
keeping up-to-date, 352–354
testing code, 343–349
writing code with best practices in mind,

338–343
BFILE column

description of, 254–255
loading data to BLOB using, 257–258
loading data to CLOB using, 256–257
populating, 255–256

binary large object (BLOB)
description of, 254
loading page to, 257–258

BINARY_DOUBLE datatype, 225–226
BINARY_FLOAT datatype, 225–226
BINARY_INTEGER datatype, 225–226
bind variable, 317–324
BLOB (binary large object)

description of, 254
loading page to, 257–258

Boolean datatypes, 241–242
Boolean expression, 380–382
breakpoint, setting, 343
building on the fly

DDL, 325–327, 366–367
SQL, 316–325

built-in functions
character datatypes and, 244–250
dates and, 237–241
numeric datatypes and, 228–229
using, 386–388

built-in packages
DBMS_RANDOM, 230
overview of, 83–84

BULK COLLECT command
dynamic SQL and, 329–330
NO_DATA_FOUND exception and, 360
using, 284–287

bulk operations, 283–287, 348, 352
business function for code, 336–337
business logic, placing, 185–186

• C •
C programming language, 1, 18, 348
caching calculated data, 365
call

overloading, 76–78
to subprogram, resolving, 78–80

calling cursor declared in different
package, 141

candidate key, 13
capitalization

coding standards for, 211
naming standards and, 190, 191

case sensitivity
identifiers and, 44
text literal and, 51

CASE statement, 89–91
casting collection to table, 278–279

398 Oracle PL/SQL For Dummies

26_599577 bindex.qxp 5/1/06 12:18 PM Page 398

CHAR datatype, 242–244
character datatypes

built-in functions and, 244–250
CHAR versus VARCHAR2 datatypes,

242–244
description of, 221, 242

character large object (CLOB)
description of, 254
loading data to, 256–257
string operations and, 258–259

character literal, 50
character set, 43
CHR function, 244–245
client computer and software, setting up

Oracle environment and, 24
CLOB (character large object)

description of, 254
loading data to, 256–257
string operations and, 258–259

closing explicit cursor, 382–383
code. See also coding; coding standards;

storing code in database; testing code;
writing code

assigning to user-defined exception,
115–116

commenting, 342, 395–396
compiling, in database package, 170–172
compiling, while writing, 341–342
cutting and pasting, 391–392
having someone review, 205–206, 339
managing, 166
modular, 136
placing in database, 165–166
readability of, 393–395
recursive, 80–82
running, 56–59
self-documenting, 395
server-side, pros and cons of, 20–21

code library, 340
coding. See also code; coding standards

built-in functions and, 386–388
communicating effectively, 337
creating specification, 337–338, 345
thinking through program, 336
understanding big picture, 336–337

coding standards
for capitalization, 211
for comments, 207–210
for constant value, 202–205

for data conversion for dates, 213
for data element, 206
for datatype declarations, 211–213
for global variables, 210
for indentation, 210–211
for line length, 213
overview of, 201–202
for program units, 205–206
for SQL, 214–217
for synonyms, 213–214

collection
associative arrays, 280–283
description of, 271–272
naming standards for, 197–198
nested table, 275–279
VARRAY, 272–275

column
alias for, 216
BFILE, 254–258
order, and DML statement, 360–362
prefixing name of, 215–216

comma, placing, 206
command line interface and SQL*Plus, 28
comment

coding standards for, 207–210
description of, 45–46
multi-line, 46
single-line, 46, 207

commenting out code, 342–343, 395–396
COMMIT command, 291, 293–294, 325–327

implicit, 366–369
communicating effectively, 337
compilation error

interpreting and fixing, 73–76
spotting, 57

compiler hints and directives, 82–83
compiling code

in database package, 170–172
while writing, 341–342

composite datatypes, 221
conditional statement
CASE, 89–91
description of, 85
grouping, 380–382
IF...ELSE, 87–89
IF...THEN, 86–87
NULL value, comparing with, 91–95
working with, 95–97

399Index

26_599577 bindex.qxp 5/1/06 12:18 PM Page 399

conferences, Oracle, 353–354
constant keyword, 47
constant value, coding standards for,

202–205
control structure. See conditional

statement; loop
controlling

access to package, 172–173
scope with variable declaration, 52
when trigger fires, 176–177

conventional wisdom, evaluating, 352–353
converting datatype implicitly, 388–390
cost of testing, 344
CREATE OR REPLACE PACKAGE

command, 70
CREATE OR REPLACE procedure/function

command, 68–69
cursor. See also explicit cursor; implicit

cursor
accessing status info using variables,

144–148
declaring, 128–129, 137–141
to loop through multiple records, 132–133
new wisdom regarding, 352
passing parameter to, 134–137
placing in nested loop, 133–134
retrieving information with too many,

347–348
to return more than one piece of

information, 129–132
SELECT * statement and, 214–215
updating records fetched from, 148–150

CURSOR FOR loop
comparing to cursor with LOOP

command, 150–152
description of, 150
difficulty using, 153–155
exception handling and, 152–153, 385
to know what record is processing, 155

cursor variable, 144–145, 324–325
cutting and pasting code, 391–392

• D •
data caching, 182
data collections, 271–280
data consistency, transactions and,

292–293

Data Definition Language (DDL)
building on the fly, 325–327, 366–367
description of, 17

data element, coding standards for, 206
Data Manipulation Language (DML), 17
data model, 337

logical, 12
physical, 12

database. See also database connection,
establishing; placing code in database;
storing code in database

design terminology, 12–13
installing, 27
logic implemented in, 180
normalization of, 13–16
procedures and functions, 68
relational, 9–12
Relational Database Management

Systems (DBMS), 16
setting up Oracle environment and, 24
storing code inside, 36

database administrator
DBMS and, 16
resources for, 2

database application developer, 16
database connection, establishing

operating services, checking, 32
password, resetting, 33–34
setting up server to communicate, 34
unlocking or locking account, 33
user accounts and, 31–32
username and, 32

database designer, 16
Database Development For Dummies

(Taylor), 337
database server, setting up Oracle

environment and, 24
database-level trigger, 19, 20
datatype

converting implicitly, 388–390
defining, 48
defining own, 260–271
description of, 221
functions and, 157
generic declarations of, 211–213
groups of, 221–222
internal, 236–237
large objects (LOBs), 253–259

400 Oracle PL/SQL For Dummies

26_599577 bindex.qxp 5/1/06 12:18 PM Page 400

naming, 196–197
Native Dynamic SQL and, 328–334
numeric, 222–229
string, 242–250
user-defined subtypes, 259–260
of variable, 211–213

datatype family of parameters, 78–79
date. See also date/time information

explicit data conversion for, 213
as number, 375–376

Date, Chris J. (author), 16
DATE datatype, 229–234
date/time information

built-in functions and, 237–241
data conversion, 213
DATE datatype, 229–234, 375–376
INTERVAL datatype, 236–237
TIMESTAMP datatype, 234–235
TIMESTAMP WITH TIME ZONE datatype,

235–236
DBMS (Relational Database Management

Systems)
description of, 16
setting up Oracle environment and, 24

DBMS_JAVA package, 84
DBMS_JOB package, 84
DBMS_OUTPUT package, 83, 340, 343
DBMS_OUTPUT.PUT_LINE command,

35–36, 56
DBMS_RANDOM package, 84, 230
DBMS_UTILITY package, 84
DDL (Data Definition Language)

building on the fly, 325–327, 366–367
description of, 17

deadlock, 112, 298, 325
debugging

adding information to debugging
messages, 378

overview of, 342–343
WHEN OTHERS exception and, 370–372

declaration section of anonymous block
avoiding exception raised in, 124–126
cursor and, 128
description of, 35

declaring. See also defining
cursor, 128–129, 137–141
exception, 106
variable, 46–48

DECODE function, 96–97
DEFAULT clause, 47
defining. See also declaring

custom datatype, 260–261
datatype, 48
implicit cursor, 373–375
record type, 130–131
subtype, 260

deleting internal element from collection,
276

delimiters, list of, 44–45
dependency of attribute, 14, 15
deployment and Agile approach, 350–351
deterministic behavior of function, 159–160
direct declaration, 46–47
directory, 255
discarding code, 341
DML (Data Manipulation Language), 17
DML statement, column order and, 360–362
DML trigger, 71–72
domain, 212
Dorsey, Paul, Oracle Developer: Advanced

Forms & Reports, 22
double dash (--), 46, 207
DUP_VAL_ON_INDEX exception, 111
dynamic, definition of, 313
dynamic SQL

bind variables and, 317–324
building DDL on the fly, 325–327
building SQL on the fly, 316–317
cursor variables and, 324–325
datatypes and, 328–334
EXECUTE IMMEDIATE command,

314–316
overview of, 313–314
quoted strings and, 327–328

• E •
elements. See lexical set of elements
ELSIF statement, 88–89
Embarcadero, RapidSQL, 31
embedding code in database view, 21
END statement, 58, 208, 210
endless loop, 81, 384–386
enforcing naming standards, 199–200
Enterprise Edition, 27
entity, 13

401Index

26_599577 bindex.qxp 5/1/06 12:18 PM Page 401

error code prefix, 110
error message

compilation and, 342–343
including in user-defined exception,

116–117
listing example, 58
parsing and, 56–57

errors and coding standards, 201–202, 217
exception. See also exception handler

autonomous transaction and, 307–308
commands to support, 106
description of, 105
handling, 122–126
naming standards for, 196
predefined, 111–112
propagation of, 118–126
types of, 110–111
unhandled, 108
user-defined, 105, 113–118, 196
WHEN OTHERS exception, 370–372

exception code, 110
exception handler

adding, 107–110
avoiding exception raised in, 124–126
CURSOR FOR loop and, 152–153, 154–155
description of, 106
implicit cursor and, 143
NOCOPY hint and, 363–364
SELECT INTO command and, 357–360
WHEN OTHERS THEN NULL and, 217,

377–378
writing, 126

exception message, 111
exception name, 111
exception section of anonymous block, 35
EXECUTE IMMEDIATE command, 314–316
EXIT command, 98, 101–102, 104
EXIT WHEN statement, 98
exiting loop, 385
explicit column list, 214–215
explicit commit, 294
explicit cursor

checking status of, 145–146
closing, 382–383
conventional wisdom and, 352
description of, 128
implicit compared to, 374–375

explicit data conversion for dates, 213
expression

Boolean, 380–382
description of, 53
parentheses and, 216, 381–382
regular, 250–251
simple, example of, 54

external large object, 254–255
EXTRACT function, 237–238

• F •
Feuerstein, Steven (PL/SQL expert),

5, 211, 353
file, naming standards for, 198–199
A First Course in Database Systems (Ullman

and Widom), 16
First Normal Form (1NF), 14
FOR loop, 102–104, 385
foreign key, 11, 12
formal parameter, 63–67
format mask, 231–234
forward slash (/), 35
%FOUND variable, 144, 145, 146, 148, 156
full rollback, 294–295
function. See also built-in functions

autonomous transaction and, 368–369
description of, 21, 59
getter, 203, 347
grouping, 380
naming standards for, 193–194
performance issues and, 158–161,

364–366
referencing in SQL, 155–160
RETURN statement and, 369–370
returning value with, 61–62
setter, 203, 347
storing in database, 68–69

functional programming language, 41–42

• G •
generic programming language, 41
getter function, 203, 347
global constant, 202–203

402 Oracle PL/SQL For Dummies

26_599577 bindex.qxp 5/1/06 12:18 PM Page 402

global variable
coding standards and, 210
description of, 52–53
passing parameters compared to,

372–373
storing in database table, 168–169
storing in middle tier, 169–170

“good enough is best” expression, 348–349
grouping functions, 380
grouping logical conditions, 380–382
GUI tool

SQL*Plus, 28–29
third-party, 30–31

• H •
handling exception. See exception handler
hard coding, 202–206
hardware requirements, 25–26
header

commenting code and, 396
of program unit, defining cursor in, 138

HR (Human Resources) schema, 38

• I •
IDE (Integrated Development Environment),

343
identifier, 44
IF...ELSE statement, 87–89
IF...THEN statement, 86–87
implicit commit

DDL statements and, 325–327, 366–369
firing, 294

implicit cursor
checking status of, 146–148
conventional wisdom and, 352
description of, 142
handling exceptions in, 143
retrieving single row using, 142
returning, into record, 143–144
using, 373–375

implicit rollback, 297–298
implicitly converting datatype, 388–390
IN OUT parameter, 65–67, 362–364
IN parameter, 63–64
indenting code, 210–211

Independent Oracle Users Group, 5, 353
INDEX BY BINARY_INTEGER associative

array, 283
infinite loop, 81, 384–386
init-caps method, 191
INSERT statement

DML statements and, 360–362
example of, 206
records and, 265–267

installing
database, 27
Oracle environment, 23

instance
of entity, 13
of object, 269

INSTEAD OF trigger, 72–73, 177–182
INSTR function, 245–248
integer literal, 49–50
Integrated Development Environment

(IDE), 343
interface, 30. See also GUI tool
internal large object, 254
Internet Application Server, 24
interpreter and running code, 56
INTERVAL datatype, 236–237
INVALID_NUMBER exception, 111
%ISOPEN variable, 144, 146, 148, 156
iSQL*Plus, 29
iteration. See loop

• J •
Java, influence on naming standards, 188
Java (J2EE) environment, 20–21, 183
JavaServer Faces environment, 21
JSP/Struts environment, 21

• K •
Koletzke, Peter, Oracle Developer:

Advanced Forms & Reports, 22

• L •
labeling block (<< >>), 43
large object (LOB)

description of, 222, 253

403Index

26_599577 bindex.qxp 5/1/06 12:18 PM Page 403

large object (LOB) (continued)
external, 254–255
internal, 254

LAST_DAY function, 240
lexical set of elements

comments, 45–46
delimiters, 44–45
identifiers, 44
literals, 45
overview of, 43

line length, 213
listings
ADD_MONTHS function, 239–240
AFTER EVENT trigger, 176
assigning Boolean variables, 241–242
assigning error message for user-defined

exception, 117
assigning fraction to integer, 223
assigning name to predefined exception

code, 113
assigning record variables, 265
assigning value to variable, 48–49
associative array, 198
associative array, indexing, 282–283
associative array, using, 281
author comment block, 207
autonomous transaction, 303
autonomous transaction, code using, 311
autonomous transaction syntax, 299
autonomous transaction, with data

changes, 304–305
autonomous transaction, with DDL

commits, using, 368
backup routine procedure, 367
bind variables, multiple, using, 319–320
bind variables, reusing in dynamic

PL/SQL, 321–322
bind variables, reusing in dynamic SQL,

322
bind variables, using in dynamic SQL, 319
BULK COLLECT command, using, 285
BULK COLLECT command, using with

limit, 286–287
bulk query into nested tables, 285–286
caching calculated data, 365
calling cursor declared in different

package, 141

CHAR datatype, 243
CHR and ASCII functions, 245
CLOB string operations, 259
code assigned to user-defined exception,

115–116
code, badly written, 393
code, somewhat improved, 393–394
code, well-written, 394–395
code, with conditional control to avoid

exception, 108
code, with explicit handler for predefined

exception, 108–110
code, with no exception handler, 107
code, with no repeated sections, 392
combining ways of assigning variable

values, 263
commented code, correct, 395–396
comparisons using NULL value, 91–92
compiling stored procedures, 73–74
condition using CASE statement, 90
create type illustrated, 328–329
cross datatype, stable example, 389
cross datatype, unstable example, 389
cursor variables and dynamic SQL, 324
cursors in nested loops, 134
DATE format mask, 233
dates, finding difference between, 375
declaring cursor, 128
declaring cursor, in package body, 140
declaring cursor, within procedure, 138
declaring variable by reference, 47–48
decreasing size of array, 274–275
defining cursor in anonymous block, 139
defining record type for cursor using

%ROWTYPE declaration, 132
difference between explicit and implicit

cursors, 374
displaying date and time, 230–231
DML trigger example, 71–72
DML using record variables, 266
dynamic SQL, 315
dynamic SQL, reviewing, 315–316
dynamic SQL, using, 316–317
electronic funds transfer, performing, 292
ELSE, using in condition statement, 87–88
ELSIF statement, 88
endless loop example, 384

404 Oracle PL/SQL For Dummies

26_599577 bindex.qxp 5/1/06 12:18 PM Page 404

error from COMMIT in trigger, 301
error messages, 58
exception handler, adding to CURSOR

FOR loop, 154–155
exceptions raised in exception handler,

125–126
exiting from nested loop, 100
explicit commit, 294
explicit cursor, 145–146
explicit cursor, correctly written, 382–383
explicit date conversion, 213
explicit record type, 261–262
format mask failure, 233–234
format masks, 232
formatting address, correct code, 390
formatting address, incorrect code, 390
function example, 61–62
globals stored in package, 203–204
grouping conditions, 381
handling uncommitted changes using

p_rollback_test, 307
handling unnamed exception, 112
hard-coded data value, 202–203
hard-coded rule parameter, 203
implicit commits in DDL statements

(bug fixed), 326–327
implicit commits in DDL statements

(with bug), 326
implicit declaration, 262
INDEX BY BINARY_INTEGER, using, 283
insert by using RECORD type variable, 362
INSERT statement, improper, 361
INSERT statement, safe, 361
INSTEAD OF trigger view, 178–180
INSTR function, 247–248
integer and real literals, examples of, 50
LAST_DAY function, 240
limiting function returns, 369–370
loading data to CLOB, 256–257
loading page to BLOB, 258
locking example, 306
login function package, 167–168
loop, exiting, 385
loop, SQL replacement for regular,

385–386
looping through cursor using CURSOR

FOR loop, 151

looping through cursor using LOOP
command, 151

looping through records in cursor, 133
LPAD and LTRIM functions, 249–250
named notation, 66–67
nested loop, 99
nested table, creating, 276
nested table, to return employee list,

277–278
nested WHILE loop, 101
NULL bind variable, 322–323
NUMBER and BINARY_INTEGER

datatypes, 226
NUMBER datatype, 223, 224–225
NVL function, 93–94
object type example, 269
OUT parameter, 64–65, 320–321
parameter naming example, 195–196
passing parameters in cursor, 135
passing variables without copying, 264
placing data elements on separate lines,

206
p_log_audit, as autonomous

transaction, 301
p_log_audit, non-working, 300
pointer, creating, 256
procedure example, 59–60
propagating exceptions between program

units, 118–120
proper naming standards usage, 197
query audit function, 310
raising exception, in declaration section,

124
raising exception, local PL/SQL block, 123
record datatype, using, 266–267
referencing package specifications, 171
referencing subtype, 260
replacing hard-coded data value with

reference, 204–205
replacing rule parameter with reference,

205
retrieving cursor variables with record

variable, 130–131
returning cursor variables quick and easy

way, 130
rollback, code requiring, 297
rollback, full, explicit, 295

405Index

26_599577 bindex.qxp 5/1/06 12:18 PM Page 405

listings (continued)
rollback, partial, 295–296
row-level trigger, 175–176
savepoint, adding, 296
SELECT FOR UPDATE command, 149–150
SELECT * in cursor, 214–215
SELECT INTO, with correct result,

359–360
SELECT INTO, with wrong result, 359
setting precision and scale, 224
simple condition statement, 86, 87
simple expression, example of, 54
single quote character, using as part of

text string, 51
social security number, better routine to

check, 387–388
social security number, routine to check,

387
SQL objects, using, 270
statement-level trigger, 175
stopping procedure execution, 61
storing exception message, 371
SUBSTR function, 246–247
subtypes example, 212–213
table prefixing of columns, 215–216
time zone variable, declaring, 235–236
TIMESTAMP datatype, 234–235
traditional condition statement, 89–90
TRUNC and ROUND functions, 238–239
%TYPE command illustrated, 212
user-defined exception, 114–115
validating rows, 363
variables, using in static SQL, 318
VARRAY, 198, 273–274
weak REF CURSOR construct, 332–333
well-commented code, 208–210
WHILE loop, 101
wrapper package, 173

literal
character, 50
description of, 45
string, 50–51

load testing, 345–346
LOB (large object)

description of, 222, 253

external, 254–255
internal, 254

local PL/SQL block, defining cursor in,
138–139

local variable, 52–53
locking

account, 33
autonomous transaction and, 306–307
INSTEAD OF trigger view, 181–182
record, 150

logic implemented in database, 180, 185–186
logical data model, 12
logical expression, parentheses and, 216
logical operators

conditions and, 95
description of, 55–56
updating record using, 148–150

Loney, Kevin, Oracle Database 10g: The
Complete Reference, 19, 140

loop
CURSOR FOR loop, 150–155, 385
description of, 85
endless, 81, 384–386
FOR loop, 102–104, 385
nested, 99–100, 133–134
simple, 97–99
types of, 97
WHILE loop, 100–102

LOOP command, 150–151
looping through multiple records, 132–133
Lowe, Doug, Networking For Dummies, 7th

Edition, 25
LPAD function, 249–250
LTRIM function, 249–250

• M •
maintaining code, 341, 392
managing code, 166
mathematical expression, parentheses and,

216
McCullough-Dieter, Carol, Oracle 9i For

Dummies, 2
memory requirements of code, 339
method, of object, 267

406 Oracle PL/SQL For Dummies

26_599577 bindex.qxp 5/1/06 12:18 PM Page 406

middle tier, storing global variable in,
169–170

middle-tier approach
advantages and disadvantages of,

183–185
description of, 183–184

mixed notation, 67
modular code, 136
MONTHS_BETWEEN function, 240–241
multi-line comment (/* */), 46

• N •
named block, 42
named notation, 66–67
naming standards

application development tools influence
on, 189

for collections, 197–198
enforcing, 199–200
for exceptions, 196
for files, 198–199
Java influences on, 188
for objects, 190–191
Oracle database influences on, 188
overview of, 187–188
for parameters, 194–196
for program units, 193–194
setting for common code elements, 189
for user-defined datatypes, 196–197
for variables, 191–193

Native Dynamic SQL
bind variables and, 317–324
building DDL on the fly, 325–327
building SQL on the fly, 316–317
cursor variables and, 324–325
datatypes and, 328–334
EXECUTE IMMEDIATE command, 314–316
overview of, 313–314
quoted strings and, 327–328

nested loop
description of, 99–100
placing cursor in, 132–133

nested table, 275–279
nested transaction, 302–303
nesting anonymous blocks, 43
.NET environment, 20–21, 183

network, setting up Oracle environment
and, 24–25

Networking For Dummies, 7th Edition
(Lowe), 25

NOCOPY hint
passing parameter and, 82, 362–364
passing record variable and, 264

normalized database
description of, 10
First Normal Form (1NF), 14
Second Normal Form (2NF), 14–15
Third Normal Form (3NF), 15–16
usefulness of, 13

%NOTFOUND variable, 144, 146, 148, 156
NULL bind variable, 322–323
NULL value

comparing with, 91–95
DEFAULT clause and, 47
handling, 379–380

NUMBER datatype, 222–225
precision, 222
scale, 222

number, date as, 375–376
numeric datatypes
BINARY_FLOAT and BINARY_DOUBLE,

225–226
BINARY_INTEGER, 225–226
built-in functions and, 227–229
description of, 221, 222
NUMBER, 222–225

numeric literal, 49–50
NVL function, 93–94

• O •
object

creating, 328–329
naming standards for, 190–191
repeatedly accessing same, 347

object identifier, 270
object table, 270, 271
object type, 267–271
object type abbreviations, 199
object type body, 268
object type specification, 268
ODTUG-SQLPLUS-L list, 354
OE (Order Entry) schema, 38

407Index

26_599577 bindex.qxp 5/1/06 12:18 PM Page 407

OPEN/FETCH/CLOSE sequence, 133, 150,
152, 153–154

OPEN...FOR construct, 331–333
operand, 53
operating services, checking, 32
operating system requirements, 25
operators

description of, 53–54
logical, 55–56, 95, 148–150
precedence of, 54–55

ORA error code prefix, 110
Oracle. See also Oracle environment

Application Development Framework -
Business Components, 169, 182

Application Server, 17
Applications, 17
Database 10g, 27
DBMS, 17
Developer, programming for, 21–22
OpenWorld conference, 353
SQL Developer, 30, 166, 189
staying up-to-date on, 352–354

Oracle Database 10g PL/SQL Programming
(Urman), 353

Oracle Database 10g: The Complete
Reference (Loney), 19, 140

Oracle Developer: Advanced Forms &
Reports (Koletzke and Dorsey), 22

Oracle Development Tools User Group,
5, 353

Oracle environment
hardware and software requirements for,

25–26
installing, 23
overview of, 17
setting up, 23–25
SQL in, 18

Oracle 9i For Dummies (McCullough-
Dieter), 2

Oracle Technology Network (OTN),
5, 26, 27

ORDER BY statement, and parameters, 136
Order Entry (OE) schema, 38
OUT parameter

bind variables and, 320–321
overview of, 64–65

overloading call, 76–78

• P •
package

avoiding size limitations with, 174
body, defining cursor in, 139–140
built-in, 83–84, 230
calling cursor declared in different, 141
code scope and visibility in, 167–168
coding standards for, 217
commenting out code and, 343
compiling code in, 170–172
controlling access to, 172–173
description of, 69–70
naming standards for, 193–194
pkg_global, 204
as place to put code, 166
placing, for optimal performance, 173–174
referencing, 173
size limitations and, 174
storing global values in database tables,

168–169
storing global values in middle tier,

169–170
storing globals in, 203–204
value, as session-specific, 168
wrapper, 172–173

package specification (spec)
defining cursor in, 140–141
description of, 70
recompiling, 170
referencing, 171–172

PAD function, 249–250
pair programming, 350
parameter

bind variables and, 320–321
datatype family of, 78–79
declaring different number of, 76–77
IN OUT parameter, 65–67, 362–364
IN parameter, 63–64
naming standards for, 194–196
OUT parameter, 64–65
passing, global variable compared to,

372–373
passing, to cursor, 134–137
passing, to procedure, 36–37, 61, 66
returning list based on, 277–279
subprograms and, 59, 63
using different names of, 77

408 Oracle PL/SQL For Dummies

26_599577 bindex.qxp 5/1/06 12:18 PM Page 408

parentheses
in complex mathematical and logical

expressions, 216, 381–382
execution order and, 55

parsing error, 56–57
partial rollback, 295
Pascal, 1, 18
passing

bind variables, 319–320
IN OUT parameter, 362–364
parameter, global variable compared to,

372–373
parameter, to cursor, 134–137
parameter, to procedure, 36–37, 61, 66
variable, from program to subprogram, 82
variable, without copying, 264

password, resetting, 33–34
performance issues

bind variables and, 317–324
built-in functions and, 388
code and, 339
functions and, 158–161, 364–366
INSTEAD OF trigger view and, 181
large objects and, 254
placing packages and, 173–174
testing code and, 345–348
writing code and, 341

performance testing, 345–346
physical data model, 12
pkg_global package, 204
placing

code in application server, 183–185
comma, 206

placing code in database
advantages of, 182
disadvantages of, 182–183
overview of, 165–166

PL/SQL (Programming Language/
Structured Query Language)

database triggers and, 19–20
description of, 1, 9, 18, 41
features of, 18–19
as functional language, 41
keeping code server-side and, 20–21
lexical elements, 43
limitations of, 42
Oracle Developer and, 21–22

scripting and, 20
SQL compared to, 10

pointer, 254–255
point-in-time value, 229
positional notation, 66
Powell, Gavin, Beginning Database

Design, 16
pragma autonomous transaction, 299–300
PRAGMA command, 83, 113
precedence of operators, 54–55
precision, 222
predefined exception, 111–112
prefix

for column, 215
naming object and, 190
naming parameter and, 194–195
naming procedure or function and, 193
naming variable and, 191, 192, 193

primary key, 13
procedural block, 42–43
procedural section of anonymous block, 35
procedure

declaring cursor within, 138
description of, 21, 59
naming standards for, 193–194
passing parameter to, 36–37, 66
stored, 36, 68, 165–166
storing in database, 68–69
wrapping task into, 59–61

production environment, testing code for,
345–346

program, creating. See also subprogram;
thinking through program

Oracle SQL Developer, 30
SQL*Plus and, 28–29
third-party tools, 30–31

program fundamentals
anonymous block, 34–36
passing parameters to procedures, 36–37
stored procedures, 36

program unit. See also function; package;
procedure; trigger

coding standards for, 205–206
naming standards for, 193–194
packaging stored, 217

programming language, PL/SQL as, 41–42

409Index

26_599577 bindex.qxp 5/1/06 12:18 PM Page 409

Programming Language/Structured Query
Language. See PL/SQL

propagation of exceptions
avoiding exceptions raised in declaration

part and exception handler, 124–126
handling exceptions without halting

program, 122–123
overview of, 118–122

proving code with test case, 340
purchase order table, example of, 11–12

• Q •
Quality Assurance team, 343
query audit, 309–310
Quest Software

SQL Navigator, 31, 166
Toad, 31, 166
utPLSQL, 345

quoted string, 327–328

• R •
RAISE command, 105, 114
raising exception, 106
RapidSQL (Embarcadero), 31
readability of code, 393–395
read/write restrictions, 157–158
real literal, 49–50
recompiling package specification, 170
record type

assigning values in, 262–265
columns and, 361–362
defining, 130–131
description of, 261
explicit, 261–262
implicit, 262
inserts, updates, and, 265–267

record variable, declaring, 129, 130–131
records

detecting which is processing, 155
fetched from cursor, updating, 148–150
looping through multiple, 132–133
returning implicit cursor into, 143–144

recursion, 80–82, 383
REF CURSOR construct, 330–333
refactoring algorithm, 347

reference
declaring variable by, 47–48
description of, 222
passing variable from program into

subprogram using, 82
referencing

constant, 202
function in SQL, 155–160
package, 173
package specifications, 171–172

regular expression, 250–251
relational database, 9–12
Relational Database Management Systems

(DBMS)
description of, 16
setting up Oracle environment and, 24

REPLACE function, 248–249
reserved words, 44, 211, 214
resetting password, 33–34
resolving

call to subprogram, 78–80
deadlock, 298

resources. See also Web sites
built-in packages, 83
conferences, 353–354
for database administrator, 2
installation, 27
large objects, 255
normalization, 16
object-oriented programming, 271
Oracle exceptions, 111
PL/SQL and Oracle Environment, 4–5
reference books, 353
regular expressions, 251
user groups, 5, 354

retrieving
information with too many cursors,

347–348
single row of data, 142

RETURN command, 61, 369–370
returning

implicit cursor into record, 143–144
list based on parameters, 277–279
more than one piece of information,

129–132
value with function, 61–62

RETURNING clause, 323–324

410 Oracle PL/SQL For Dummies

26_599577 bindex.qxp 5/1/06 12:18 PM Page 410

RETURNING INTO clause, 262–263
reusing

bind variable, 321–322
code, 59

ROLLBACK command, 291, 294–298
ROUND function, 238
routine

batch, 21, 24, 181
backup, 367
limiting size of, 342–343
tuning performance of, 346–348

row, validating, 363
%ROWCOUNT cursor variable, 144, 146,

155, 156
row-level trigger, 175–176
%ROWTYPE declaration, 131–132, 143–144,

333–334
rules of normalization

description of, 10, 13
First Normal Form (1NF), 14
Second Normal Form (2NF), 14–15
Third Normal Form (3NF), 15–16

running code
compilation errors, 57
identifying common mistakes, 56–57
interpreter and, 56
semicolon-related errors, 57–59

runtime, 78

• S •
sample data sets

Human Resources and Order Entry
schemas, 38

overview of, 37
Scott/Tiger schema, 37–38

savepoint, 295, 296
scalar datatypes. See also character

datatypes; date/time information;
numeric datatypes

Boolean, 241–242
description of, 221

scale, 222
schema, 27, 31
scientific notation, 50, 223
scope of variable, 51–53
Scott/Tiger schema, table descriptions,

37–38

scripting, speed and, 20. See also code;
coding

Second Normal Form (2NF), 14–15
security and autonomous transaction,

300–302
security software, 25–26
SELECT FOR UPDATE command,

149–150, 181
SELECT INTO command, 142–143, 357–360
SELECT * statement, 214–215
SELECT statement, parameters and, 136
selector, 90
self-documenting code, 395
self-mutation issues, 310–312
semicolon (;), 35
semicolon-related error, 57–59
separating individual words, 191
server, setting up to communicate, 34
server-side code, pros and cons of, 20–21
server-side PL/SQL, 9
session-level trigger, 19–20
session-specific package value, 168
SET SERVEROUTPUT ON command, 35, 56
setter function, 203, 347
short-circuit evaluation, 95–96
simple loop, 97–99
simulating production environment,

345–346
single quote (‘), 50–51
single-line comment, 46, 207
size limitations and package, 174
software

application development, 17
application server, 24
assigning code to user-defined exception

and, 116
client, 24
downloading from Oracle Technology

Network, 26
requirements for, 25–26
security, 25–26
testing, 344

spec (package specification)
defining cursor in, 140–141
description of, 70
recompiling, 170
referencing, 171–172

specification, code, 337–338, 345

411Index

26_599577 bindex.qxp 5/1/06 12:18 PM Page 411

SQL (Structured Query Language). See also
Native Dynamic SQL

coding standards for, 214–217
description of, 17
features of, 19
integration with PL/SQL, 1, 18, 127–161
in Oracle environment, 18
objects, 270
PL/SQL compared to, 18
referencing functions, 155–157
stored procedure, 36, 68, 73, 165–166

SQL Developer (Oracle), 30, 166, 189
SQL For Dummies, 5th Edition (Taylor),

3, 18
SQL Navigator (Quest Software), 31, 166
SQLCODE function, 111–112
SQL*Plus, 28–29
standards, 187. See also coding standards;

naming standards
statement-level rollback, 297
statement-level trigger, 174–175
status of cursor, accessing

explicit, 145–146
implicit, 146–148
variables for, 144–145

stopping execution
of procedure, 61
of program, handling exception without,

122–123
stored procedure, 36, 68, 165–166
storing

exception message, 371
large objects, 254

storing code in database
compilation errors, 73–76
overview of, 67–68
packages, 69–70, 166–174
procedures and functions, 68–69
triggers, 71–73, 174–182

string
datatype, 242–250
quoted, 327–328

string literal, 50–51
string operations and CLOB, 258–259
strong REF CURSOR construct, 331
Structured Query Language. See SQL
stubs of code, writing, 338–339

subprogram
overview of, 59
parameters of, 63–67
resolving call to, 78–80
returning value with function, 61–62
wrapping task into procedure, 59–61

SUBSTR function, 245–248
subtype

coding standards and, 212–213
user-defined, 259–260

suffix
naming collection and, 197
naming object and, 190
naming procedure or function and, 194
naming user-defined datatype and, 196
naming variable and, 191, 192, 193

synonyms, 213–214
syntax

anonymous block, 34–36
passing parameters to procedures, 36–37
stored procedures, 36

SYSDATE, minimizing calls to, 348
system architecture

checking while writing code, 339–340
understanding, 336–337, 340

system trigger, 73

• T •
table

casting collection to, 278–279
designing, 180
management of, 352
nested, 275–279
object, 270, 271
placing trigger on, 174–177
purchase order, example of, 11–12
storing global value in, 168–169

table alias, guidelines for, 215
table descriptions for Scott/Tiger schema,

37–38
table-level trigger, 19
Taylor, Allan G.

Database Development For Dummies, 337
SQL For Dummies, 5th Edition, 3, 18

team approach, 349–350
termination point of recursion, 81

412 Oracle PL/SQL For Dummies

26_599577 bindex.qxp 5/1/06 12:18 PM Page 412

terminology for database design, 12–13
test case, 340
test-first approach, 351
testing code

architecture for, 345
“good enough is best” expression and,

348–349
overview of, 343–344
performance and load, 345–346
specifications and, 345

text literal, 51
thinking through program

communicating effectively, 337
creating code specification, 337–338
overview of, 336
understanding big picture, 336–337

Third Normal Form (3NF), 15–16
third-party tools for creating programs,

30–31
TIMESTAMP datatype, 234–235
TIMESTAMP WITH TIME ZONE datatype,

235–236
Toad (Quest Software), 31, 166
TO_CHAR function, 230–231, 237
TO_DATE function, 232
transaction. See also autonomous

transaction
COMMIT command and, 293–294
description of, 291
LOB pointers and, 259
to maintain data consistency, 292–293
nested, 302–303

transaction-level rollback, 297–298
transitive dependency, 15
TRANSLATE function, 248–249
trigger

as autonomous transaction, 308–309
database, 19
DML, 71–72
EVENT, 176–177
INSTEAD OF, 72–73, 177–182
naming standards for, 193–194
placing on table, 174–177
row-level, 175–176
statement level, 174
storing code in database using, 71
system, 73
types of, 19–20

TRIM function, 249–250
TRUNC function, 238
TRUNCATE TABLE command, 366
tuning. See performance issues
%TYPE command, 212

• U •
Ullman, Jeffrey D., A First Course in

Database Systems, 16
underscore (_), 191
unlocking account, 33
unnamed exception, 112
UPDATE statement

records and, 148, 150, 265–267
transaction and, 293

updating record fetched from cursor,
148–150

Urman, Scott, Oracle Database 10g PL/SQL
Programming, 353

user account, connecting to database and,
31–32

user and Agile approach, 349
user groups, 5, 354
user interface application developer, 16
user-defined datatype, naming standards

for, 196–197
user-defined exception

assigning code to, 115–116
example of, 105
including error message in, 116–117
naming standards for, 196

user-defined exception handling, 114–115
user-defined subtype

description of, 259–260
object, 267–271
record datatype, 261–267

username, connecting to database with, 32
USER_SOURCE view, 74–75
UTL_FILE package, 83–84
utPLSQL (Quest Software), 345

• V •
validating row, 363
value. See also NULL value

assigning in record, 262–265
assigning to variable, 48–49

413Index

26_599577 bindex.qxp 5/1/06 12:18 PM Page 413

value. See also NULL value (continued)
constant, coding standards for, 202–205
getting with RETURNING clause, 323–324
global, 168–170
package, as session-specific, 168
passing variable from program into

subprogram using, 82
point-in-time, 229
returning with function, 61–62

VALUE_ERROR exception, 111
VARCHAR2 datatype, 242–244
variable. See also global variable

assigning value to, 48–49
bind variable compared to, 318–319
cursor, 144–145, 156, 324–325
datatype of, 211–213
declaring, 46–48
global, 169–170, 210
listing separately, 129–130
literals and, 49–51
local, 52–53
naming standards for, 191–193
passing from program into subprogram

using reference, 82
passing without copying, 264
record, 129, 130–131
scope of, 51–53

VARRAY (variable size array), 197, 198,
272–275

view
description of, 19
embedding code in database, 21
INSTEAD OF trigger, 177–182
USER_SOURCE, 74–75

view layer, placing code in, 185
view-level trigger, 19
visibility of code, 53, 103, 167

• W •
watch, setting, 343
weak REF CURSOR construct, 332
Web interface, SQL*Plus, 29
Web sites

Feuerstein, Steven, 5
Independent Oracle Users Group, 353

Oracle Development Tools User Group,
353, 354

Oracle Technology Network, 5, 26
third-party GUI tools, 31
user groups, 5

WHEN OTHERS exception, 370–372
WHEN OTHERS THEN NULL command,

113, 217, 377–378
WHEN OTHERS THEN RETURN NULL

command, 113
WHERE clause and parameters, 135
WHILE loop, 100–102
white space, 217
Widom, Jennifer, A First Course in Database

Systems, 16
words

reserved, 44, 211, 214
separating individual, 191

wrapper package, 172–173
wrapping task into procedure, 59–61
writing

API, 373
code specification, 337–338
exception, 126
useful comments, 208

writing code
checking architecture, 339–340
code libraries, 340
compiling and, 341–342
debugging and, 342–343
maintenance issues, 341
passing parameter to procedure, 36–37
performance issues, 341
proving with test cases, 340
simple program, 34–36
stored procedure, 36
stubbing out, 338–339

• Y •
Y2K crisis, 202

414 Oracle PL/SQL For Dummies

26_599577 bindex.qxp 5/1/06 12:18 PM Page 414

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

27_599577 bob.qxp 5/1/06 12:19 PM Page 415

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

27_599577 bob.qxp 5/1/06 12:19 PM Page 416

